如圖,點(diǎn)D,E在△ABC的邊BC上,連 接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三個(gè)等式中的兩個(gè)作為命題的題設(shè),另一個(gè)作為命題的結(jié)論,構(gòu)成三個(gè)命題:①②?③:①③?②;②③?①.
(1)以上三個(gè)命題是真命題的為(直接作答)                         ;
(2)請(qǐng)選擇一個(gè)真命題進(jìn)行證明(先寫(xiě)出所選命題,然后證明)
(1)①②?③,①③?②,②③?①;(2)選擇①③?②,證明見(jiàn)解析.

試題分析:(1)根據(jù)真命題的定義即可得出結(jié)論,
(2)根據(jù)全等三角形的判定方法及全等三角形的性質(zhì)即可證明.
試題解析:(1)①②?③,①③?②,②③?①,
(2)選擇①③?②,
證明:∵AB=AC,
∴∠B=∠C,
在△ABD和△ACE中,

∴△ABD≌△ACE(SAS),
∴AD=AE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方形ABCD中,AB=5,P是BC邊上任意一點(diǎn),E是BC延長(zhǎng)
線上一點(diǎn),連接AP,作PF⊥AP,使PF=PA,連接CF,AF,AF交CD邊于點(diǎn)G,連接PG.
(1)求證:∠GCF=∠FCE;
(2)判斷線段PG,PB與DG之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若BP=2,在直線AB上是否存在一點(diǎn)M,使四邊形DMPF是平行四邊形,若存在,求出BM的長(zhǎng)度,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD中,∠A=∠C=900,平分∠A BC交CD于E,DF平分∠A DC交AB于F
(1)若∠ABC=600,則∠ADC=       °, ∠ADF=       °;
(2)BE與DF平行嗎?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,在平面直角坐標(biāo)系中,A(a,0)、B(0,b),a、b滿足 +|a?3 |=0.C為AB的中點(diǎn),P是線段AB上一動(dòng)點(diǎn),D是x軸正半軸上一點(diǎn),且PO=PD,DE⊥AB于E.
(1)求∠OAB的度數(shù);
(2)設(shè)AB=6,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),PE的值是否變化?若變化,說(shuō)明理由;若不變,請(qǐng)求PE的值;
(3)設(shè)AB=6,若∠OPD=45°,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC中,∠1+∠2+∠3=_____度,∠4+∠5+∠6=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC中,∠C=90°,∠A=30°,BD平分∠CBA交AC于點(diǎn)D,若CD=2cm,則AD=     cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以下是小辰同學(xué)閱讀的一份材料和思考:
五個(gè)邊長(zhǎng)為1的小正方形如圖①放置,用兩條線段把它們分割成三部分(如圖②),移動(dòng)其中的兩部分,與未移動(dòng)的部分恰好拼接成一個(gè)無(wú)空隙無(wú)重疊的新正方形(如圖③).
小辰閱讀后發(fā)現(xiàn),拼接前后圖形的面積相等,若設(shè)新的正方形的邊長(zhǎng)為x(x>0),可得x2=5,x=.由此可知新正方形邊長(zhǎng)等于兩個(gè)小正方形組成的矩形的對(duì)角線長(zhǎng).
參考上面的材料和小辰的思考方法,解決問(wèn)題:
五個(gè)邊長(zhǎng)為1的小正方形(如圖④放置),用兩條線段把它們分割成四部分,移動(dòng)其中的兩部分,與未移動(dòng)的部分恰好拼接成一個(gè)無(wú)空隙無(wú)重疊的矩形,且所得矩形的鄰邊之比為1:2.
具體要求如下:
(1)設(shè)拼接后的長(zhǎng)方形的長(zhǎng)為a,寬為b,則a的長(zhǎng)度為          ;
(2)在圖④中,畫(huà)出符合題意的兩條分割線(只要畫(huà)出一種即可);
(3)在圖⑤中,畫(huà)出拼接后符合題意的長(zhǎng)方形(只要畫(huà)出一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45°,原題設(shè)其它條件不變.求證:△AEF≌△BCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC在直角坐標(biāo)系中, AB=AC,A(0,2),C(1,0), D為射線AO上一點(diǎn),一動(dòng)點(diǎn)P從A出發(fā),運(yùn)動(dòng)路徑為A→D→C,點(diǎn)P在AD上的運(yùn)動(dòng)速度是在CD上的3倍,要使整個(gè)運(yùn)動(dòng)時(shí)間最少,則點(diǎn)D的坐標(biāo)應(yīng)為(    )
A.(0,)B.(0,)C.(0,)D.(0,)

查看答案和解析>>

同步練習(xí)冊(cè)答案