【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正確的是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】D
【解析】
①根據(jù)角平分線的性質(zhì)得出結(jié)論:DE=CD;
②證明△ACD≌△AED,得AD平分∠CDE;
③由四邊形的內(nèi)角和為360°得∠CDE+∠BAC=180°,再由平角的定義可得結(jié)論是正確的;
④由△ACD≌△AED得AC=AE,再由AB=AE+BE,得出結(jié)論是正確的.
①∵∠C=90°,AD平分∠BAC,DE⊥AB,
∴DE=CD;
所以此選項(xiàng)結(jié)論正確;
②∵DE=CD,AD=AD,∠ACD=∠AED=90°,
∴△ACD≌△AED,
∴∠ADC=∠ADE,
∴AD平分∠CDE,
所以此選項(xiàng)結(jié)論正確;
③∵∠ACD=∠AED=90°,
∴∠CDE+∠BAC=360°-90°-90°=180°,
∵∠BDE+∠CDE=180°,
∴∠BAC=∠BDE,
所以此選項(xiàng)結(jié)論正確;
④∵△ACD≌△AED,
∴AC=AE,
∵AB=AE+BE,
∴BE+AC=AB,
所以此選項(xiàng)結(jié)論正確;
本題正確的結(jié)論有4個(gè),故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(1)班同學(xué)為了解2015年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,
月均用水量 (t) | 頻數(shù)(戶) | 頻率 |
6 | 0.12 | |
m | 0.24 | |
16 | 0.32 | |
10 | 0.20 | |
4 | n | |
2 | 0.04 |
請(qǐng)解答以下問題:
(1)這里采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”),樣本容量是 ;
(2)填空: , ,并把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若將月均用水量的頻數(shù)繪成扇形統(tǒng)計(jì)圖,則月均用水量“
(4)若該小區(qū)有1000戶家庭,求該小區(qū)月均用水量超過10t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】補(bǔ)全下列各題解題過程.
如圖,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度數(shù).
解:∵EF∥AD ( 已知 )
∴∠2 = ( )
又∵∠1=∠2 ( )
∴∠1=∠3 ( )
∴AB∥ ( )
∴∠BAC + = 180°( )
∵∠BAC = 70°(已知 )
∴∠AGD = _ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的頂點(diǎn)坐標(biāo)為A(﹣2,3)B(﹣3,1)C(﹣1,2),以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C′,點(diǎn)B′、C′分別是點(diǎn)B、C的對(duì)應(yīng)點(diǎn).
(1)求過點(diǎn)B′的反比例函數(shù)解析式;
(2)求線段CC′的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、B、F、C四點(diǎn)在一條直線上,EB=CF ,∠A =∠D,添以下哪一個(gè)條件仍不能證明△ABC ≌△DEF的是( )
A. ∠DEF=∠ABC B. DF∥AC C. AB∥DE D. AB =DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為線段AB上任意一點(diǎn)(不與A、B重合),分別以AO、BO為一腰在AB的同側(cè)作等腰△AOC和等腰△BOD,OA=OC,OB=OD,∠AOC與∠BOD都是銳角,且∠AOC=∠BOD ,AD與BC交于點(diǎn)P.
(1)試說明CB=AD;
(2)若∠COD =80°,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標(biāo)系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)B旋轉(zhuǎn)到點(diǎn)C的位置,一條拋物線正好經(jīng)過點(diǎn)O,C,A三點(diǎn).
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動(dòng)點(diǎn)P,過點(diǎn)P作x軸的平行線交拋物線于點(diǎn)M,分別過點(diǎn)P,點(diǎn)M作x軸的垂線,交x軸于E,F(xiàn)兩點(diǎn),問:四邊形PEFM的周長(zhǎng)是否有最大值?如果有,請(qǐng)求出最值,并寫出解答過程;如果沒有,請(qǐng)說明理由.
(3)如果x軸上有一動(dòng)點(diǎn)H,在拋物線上是否存在點(diǎn)N,使O(原點(diǎn))、C、H、N四點(diǎn)構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別是BC,DC上的一個(gè)動(dòng)點(diǎn),以EF為對(duì)稱軸折疊△CEF,使點(diǎn)C的對(duì)稱點(diǎn)G落在AD上,若AB=3,BC=5,則CF的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:如圖AB∥CD,∠1=∠2,∠3=∠4,試說明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠1+_____(_______)
∵∠3=∠4(已知)
∴∠3=∠1+_____(_______)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(_______)
即∠_____=∠_____
∴∠3=∠_____(_______)
∴AD∥BE(_______).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com