【題目】在中,,,點(diǎn)是射線上的一個動點(diǎn),作,且,連接交射線于點(diǎn),若,則_______.
【答案】4或6
【解析】
過點(diǎn)F作FD⊥AC,交AC于點(diǎn)D,根據(jù)∠ADF=∠C=90°,∠AFD=∠EAD,AF=AE,證明△AFD≌△EAC,則FD=AC=BC,AD=CE,又證明△FDG≌△BCG,得到CG=DG,由,設(shè)BC=5x,BE=2x;由點(diǎn)E是動點(diǎn),則①當(dāng)點(diǎn)E在BC線段之間時,CE=AD=3x,則AG=4x,CG=x,此時4;①當(dāng)點(diǎn)E在CB的延長線上時,CE=AD=7x,則AG=6x,CG=DG=x,此時6;即可得到答案.
解:根據(jù)題意作出圖形,過點(diǎn)F作FD⊥AC,交AC于點(diǎn)D,
∴∠ADF=∠C=90°,
∵AF⊥AE,
∴∠FAE=90°,
∴∠FAD+∠EAD=90°,
∵∠FAD+∠AFD=90°,
∴∠EAD=∠AFD,
∵AF=AE,
∴△AFD≌△EAC(AAS),
∴FD=AC=BC,AD=CE,
∵∠DGF=∠CGB,
∴△FDG≌△BCG,
∴CG=DG;
∵由,設(shè)BC=AC=5x,BE=2x,
由點(diǎn)E是動點(diǎn),則①當(dāng)點(diǎn)E在BC線段之間時,如圖:
∴CE=AD=3x,
∴CG=DG=x,
∴AG=4x,
∴;
②當(dāng)點(diǎn)E在CB的延長線上時,如圖:
∴CE=AD=7x,
∴CG=DG=x,
∴AG=6x,
∴;
故答案為:4或6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(-t,0)、B(0,t),其中t>0,點(diǎn)C為OA上一點(diǎn),OD⊥BC于點(diǎn)D,且∠BCO=45°+∠COD
(1) 求證:BC平分∠ABO
(2) 求的值
(3) 若點(diǎn)P為第三象限內(nèi)一動點(diǎn),且∠APO=135°,試問AP和BP是否存在某種確定的位置關(guān)系?說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ABC=35°,E是BC邊上一點(diǎn)且AE=CE,D是
BC邊上的中點(diǎn),連接AD,AE.
(1)求∠DAE的度數(shù);
(2)若BD上存在點(diǎn)F,且∠AFE=∠AEF,求證:BF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠A=40°,點(diǎn)P是射線B上一動點(diǎn)(與點(diǎn)A不重合),CM,CN分別平分∠ACP和∠PCD,分別交射線AB于點(diǎn)M,N.
(1)求∠MCN的度數(shù).
(2)當(dāng)點(diǎn)P運(yùn)動到某處時,∠AMC=∠ACN,求此時∠ACM的度數(shù).
(3)在點(diǎn)P運(yùn)動的過程中,∠APC與∠ANC的比值是否隨之變化?若不變,請求出這個比值:若變化,請找出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為早日實現(xiàn)脫貧奔小康的宏偉目標(biāo),我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當(dāng)?shù)卣闹С窒,辦起了民宿合作社,專門接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價x(元)和游客居住房間數(shù)y(間)的信息,樂樂繪制出y與x的函數(shù)圖象如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)合作社規(guī)定每個房間價格不低于60元且不超過150元,對于游客所居住的每個房間,合作社每天需支出20元的各種費(fèi)用,房價定為多少時,合作社每天獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點(diǎn),連接DM,EM.
(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長線上,請判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;
(2)如圖2,點(diǎn)E在DC的延長線上,點(diǎn)G在BC上,(1)中結(jié)論是否仍然成立?請證明你的結(jié)論;
(3)將圖1中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn),使D,E,F(xiàn)三點(diǎn)在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個小球由靜止開始沿一個斜坡向下滾動,其速度每秒增加2m/s.
(1)求小球速度v(單位:m/s)關(guān)于時間t(單位:s)的函數(shù)解析式,它是一次函數(shù)嗎?
(2)求第3.5s時小球的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).
(1)畫出與△ABC 關(guān)于 y 軸對稱的圖形△A1B1C1;
(2)寫出△A1B1C1 各頂點(diǎn)坐標(biāo);
(3)求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠B=90°,BC=6, 一個邊長為2的正方形DEFH沿邊CA方向向下平移,平移開始時點(diǎn)F與點(diǎn)C重合,當(dāng)正方形DEFH的平移距離為__________時,有DC2=AE2+BC2成立,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com