【題目】中,,,點(diǎn)是射線(xiàn)上的一個(gè)動(dòng)點(diǎn),作,且,連接交射線(xiàn)于點(diǎn),若,則_______

【答案】46

【解析】

過(guò)點(diǎn)FFDAC,交AC于點(diǎn)D,根據(jù)∠ADF=C=90°,∠AFD=EAD,AF=AE,證明△AFD≌△EAC,則FD=AC=BC,AD=CE,又證明△FDG≌△BCG,得到CG=DG,由,設(shè)BC=5x,BE=2x;由點(diǎn)E是動(dòng)點(diǎn),則①當(dāng)點(diǎn)EBC線(xiàn)段之間時(shí),CE=AD=3x,則AG=4x,CG=x,此時(shí)4;①當(dāng)點(diǎn)ECB的延長(zhǎng)線(xiàn)上時(shí),CE=AD=7x,則AG=6x,CG=DG=x,此時(shí)6;即可得到答案.

解:根據(jù)題意作出圖形,過(guò)點(diǎn)FFDAC,交AC于點(diǎn)D

∴∠ADF=C=90°,

AFAE,

∴∠FAE=90°,

∴∠FAD+EAD=90°,

∵∠FAD+AFD=90°,

∴∠EAD=AFD

AF=AE,

∴△AFD≌△EACAAS),

FD=AC=BC,AD=CE,

∵∠DGF=CGB,

∴△FDG≌△BCG

CG=DG;

∵由,設(shè)BC=AC=5x,BE=2x

由點(diǎn)E是動(dòng)點(diǎn),則①當(dāng)點(diǎn)EBC線(xiàn)段之間時(shí),如圖:

CE=AD=3x,

CG=DG=x

AG=4x,

;

②當(dāng)點(diǎn)ECB的延長(zhǎng)線(xiàn)上時(shí),如圖:

CE=AD=7x,

CG=DG=x,

AG=6x

;

故答案為:46.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(t,0)、B(0,t),其中t0,點(diǎn)COA上一點(diǎn),ODBC于點(diǎn)D,且∠BCO=45°+∠COD

(1) 求證:BC平分∠ABO

(2) 的值

(3) 若點(diǎn)P為第三象限內(nèi)一動(dòng)點(diǎn),且∠APO=135°,試問(wèn)APBP是否存在某種確定的位置關(guān)系?說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC中,ABAC,∠ABC35°,EBC邊上一點(diǎn)且AECE,D

BC邊上的中點(diǎn),連接AD,AE

1)求∠DAE的度數(shù);

2)若BD上存在點(diǎn)F,且∠AFE=∠AEF,求證:BFCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,∠A=40°,點(diǎn)P是射線(xiàn)B上一動(dòng)點(diǎn)(與點(diǎn)A不重合),CM,CN分別平分∠ACP和∠PCD,分別交射線(xiàn)AB于點(diǎn)M,N

1)求∠MCN的度數(shù).

2)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠AMC=ACN,求此時(shí)∠ACM的度數(shù).

3)在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,∠APC與∠ANC的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值:若變化,請(qǐng)找出變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為早日實(shí)現(xiàn)脫貧奔小康的宏偉目標(biāo),我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當(dāng)?shù)卣闹С窒拢k起了民宿合作社,專(zhuān)門(mén)接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價(jià)x(元)和游客居住房間數(shù)y(間)的信息,樂(lè)樂(lè)繪制出y與x的函數(shù)圖象如圖所示:

(1)求y與x之間的函數(shù)關(guān)系式;

(2)合作社規(guī)定每個(gè)房間價(jià)格不低于60元且不超過(guò)150元,對(duì)于游客所居住的每個(gè)房間,合作社每天需支出20元的各種費(fèi)用,房?jī)r(jià)定為多少時(shí),合作社每天獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD與正方形CEFG,M是AF的中點(diǎn),連接DM,EM.

(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線(xiàn)上,請(qǐng)判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫(xiě)出結(jié)論;

(2)如圖2,點(diǎn)E在DC的延長(zhǎng)線(xiàn)上,點(diǎn)G在BC上,(1)中結(jié)論是否仍然成立?請(qǐng)證明你的結(jié)論;

(3)將圖1中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn),使D,E,F(xiàn)三點(diǎn)在一條直線(xiàn)上,若AB=13,CE=5,請(qǐng)畫(huà)出圖形,并直接寫(xiě)出MF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)小球由靜止開(kāi)始沿一個(gè)斜坡向下滾動(dòng),其速度每秒增加2m/s

1)求小球速度v(單位:m/s)關(guān)于時(shí)間t(單位:s)的函數(shù)解析式,它是一次函數(shù)嗎?

2)求第3.5s時(shí)小球的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)畫(huà)出與△ABC 關(guān)于 y 軸對(duì)稱(chēng)的圖形△A1B1C1;

(2)寫(xiě)出△A1B1C1 各頂點(diǎn)坐標(biāo);

(3)求△ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠B=90°,BC=6, 一個(gè)邊長(zhǎng)為2的正方形DEFH沿邊CA方向向下平移,平移開(kāi)始時(shí)點(diǎn)F與點(diǎn)C重合,當(dāng)正方形DEFH的平移距離為__________時(shí),有DC2=AE2+BC2成立,

查看答案和解析>>

同步練習(xí)冊(cè)答案