【題目】按下列程序進(jìn)行運(yùn)算(如圖)
規(guī)定:程序運(yùn)行到“判斷結(jié)果是否大于244”為一次運(yùn)算,若運(yùn)算進(jìn)行了5次才停止,則x的取值范圍是 .
【答案】2<x≤4.
【解析】
試題分析:根據(jù)運(yùn)算程序,列出算式:3x-2,由于運(yùn)行了五次,所以將每次運(yùn)算的結(jié)果再代入算式,然后再解不等式即可.
試題解析:根據(jù)運(yùn)算程序得算式為3x-2,
第一次:3x-2,
第二次:3(3x-2)-2=9x-8,
第三次:3(9x-8)-2=27x-26,
第四次:3(27x-26)-2=81x-80,
第五次:3(81x-80)-2=243x-242.
由于“運(yùn)算進(jìn)行了5次才停止”,
所以243x-242>244,
解得x>2;
又第四次不大于244,
故81x-80≤244,
解得x≤4.
所以2<x≤4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題(直接寫出答案)
(1)2+(﹣2)= ;
(2)1﹣3= ;
(3)(﹣1)×(﹣3)= ;
(4)12÷(﹣3)= ;
(5)﹣32×= ;
(6)(﹣4)2018×(﹣0.25)2019= ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ACB的平分線交AB于點(diǎn)O,以O為圓心的⊙O與AC相切于點(diǎn)D.
(1)求證:⊙O與BC相切;
(2)當(dāng)AC=3,BC=6時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種運(yùn)算:,其中k是正整數(shù),且k ≥2,[x]表示非負(fù)實(shí)數(shù)x的整數(shù)部分,例如[2.6]=2,[0.8]=0.若,則的值為( )
A.2015B.4C.2014D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)前,交通擁堵是城市管理的一大難題.我市城東高架橋的開通為分流過境車輛、緩解市內(nèi)交通壓力 起到了關(guān)鍵作用,但為了保證安全,高架橋上最高限速 80 千米/小時(shí).在一般條件下,高架橋上的車流 速度 v(單位:千米/小時(shí))是車流密度 x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到 180 輛/千 米時(shí),造成堵塞,此時(shí)車流速度為 0;當(dāng) 0≤x≤20 時(shí),橋上暢通無阻,車流速度都為 80 千米/小時(shí), 研究表明:當(dāng) 20≤x≤180 時(shí),車流速度 v 是車流密度 x 的一次函數(shù).
(1)當(dāng) 0≤x≤20 和 20≤x≤180 時(shí),分別寫出函數(shù) v 關(guān)于 x 的函數(shù)關(guān)系式;
(2)當(dāng)車流密度 x 為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))w=x·v可以達(dá)到最大,并求出最大值;
(3)某天早高峰(7:30—9:30)經(jīng)交警部門控制管理,橋上的車流速度始終保持 40 千米/小時(shí),問這天 早高峰期間高架橋分流了多少輛車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠B=90°,對角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.
(1)求證:四邊形AFCE是菱形;
(2)若AB=6,BC=8,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角項(xiàng)點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點(diǎn)O以每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周.如圖2,經(jīng)過t秒后,ON落在OC邊上,則t= 秒(直接寫結(jié)果).
(2)在(1)的條件下,若三角板繼續(xù)轉(zhuǎn)動,同時(shí)射線OC也繞O點(diǎn)以每秒10°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,當(dāng)OC轉(zhuǎn)動9秒時(shí),求∠MOC的度數(shù).
(3)在(2)的條件下,它們繼續(xù)運(yùn)動多少秒時(shí),∠MOC=35°?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小炎遇到這樣一個(gè)問題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,連結(jié)EF,則EF=BE+DF,試說明理由.
小炎是這樣思考的:要想解決這個(gè)問題,首先應(yīng)想辦法將這些分散的線段相對集中.她先后嘗試了翻折、旋轉(zhuǎn)、平移的方法,最后發(fā)現(xiàn)線段AB,AD是共點(diǎn)并且相等的,于是找到解決問題的方法.她的方法是將△ABE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADG,再利用全等的知識解決了這個(gè)問題(如圖2).
參考小炎同學(xué)思考問題的方法,解決下列問題:
(1)如圖3,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E,F分別在邊BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,則當(dāng)∠B與∠D滿足_ 關(guān)系時(shí),仍有EF=BE+DF;
(2)如圖4,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,若BD=1, EC=2,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校將舉行“親近大自然”戶外活動.現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行了“你最想去的景點(diǎn)”的問卷調(diào)查,要求學(xué)生只能從A,B,C,D四個(gè)景點(diǎn)中選擇一個(gè).根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)本次調(diào)查共調(diào)查了______名學(xué)生;
(2)補(bǔ)全圖①中的條形統(tǒng)計(jì)圖,圖②中最想去景點(diǎn)C的圓心角的度數(shù)為______°.
(3)已知該校共有2400名學(xué)生,估計(jì)最想去景點(diǎn)C的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com