某研究性學(xué)習(xí)小組在探究矩形的折紙問題時(shí),將一塊直角三角板的直角頂點(diǎn)繞矩形ABCD(AB<BC)的對(duì)角線的交點(diǎn)O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點(diǎn)。
⑴該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請(qǐng)你對(duì)這名成員在圖①和圖③中發(fā)現(xiàn)的結(jié)論選擇其一說明理由。
⑵試探究圖②中BN、CN、CM、DN這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由。
⑶將矩形ABCD改為邊長(zhǎng)為1的正方形ABCD,直角三角板的直角頂點(diǎn)繞O點(diǎn)旋轉(zhuǎn)到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數(shù)量關(guān)系(不需要證明)
⑴見解析⑵CM2+CN2=DM2+BN2,理由見解析⑶CM2-CN2+ DM2-BN2=2
【解析】⑴選擇圖①證明:
連結(jié)DN
∵矩形ABCD
∴BO=DO ∠DCN=900
∵ON⊥BD
∴NB=ND
∵∠DCN=900
∴ND2=NC2+CD2
∴BN2=NC2+CD2 (4分)
注:若選擇圖③,則連結(jié)AN同理可證并類比給分
⑵CM2+CN2=DM2+BN2 理由如下:
延長(zhǎng)DO交AB于E
∵矩形ABCD
∴BO=DO ∠ABC=∠DCB=900
AB∥CD
∴∠ABO=∠CDO ∠BEO=∠DMO
∴△BEO≌△DMO
∴OE=OM BE=DM
∵M(jìn)O⊥EM
∴NE=NM
∵∠ABC=∠DCB=900
∴NE2=BE2+BN2 NM2=CN2+CM2
∴CN2+CM2 =BE2+BN2
即CN2+CM2 =DM2+BN2 (4分)
⑶CM2-CN2+ DM2-BN2=2(2分)
(1)作輔助線,連接DN,在Rt△CDN中,根據(jù)勾股定理可得:ND2=NC2+CD2,再根據(jù)ON垂直平分BD,可得:BN=DN,從而可證:BN2=NC2+CD2;
(2)作輔助線,延長(zhǎng)MO交AB于點(diǎn)E,可證:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根據(jù)勾股定理和對(duì)應(yīng)邊相等,可證:CN2+CM2=DM2+BN2;
(3)根據(jù)正方形的性質(zhì)知:OA=OB,∠OAM=∠OBN,∠AOB=∠AOM+∠BOM=90°,∠MON為直角三角板的直角,可知:∠MON=∠BOM+∠BON=90°,可得:∠AOM=∠BON,從而可證:△AOM≌△BON,AM=BN,又AB=BC,可得:BM=CN,在Rt△ADM和△BCM中,根據(jù)勾股定理:DM2=AM2+AD2=BN2+AD2,MC2=MB2+BC2=CN2+BC2,故可得:CM2-CN2+DM2-BN2=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
44 | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東威海市八年級(jí)下期末模擬數(shù)學(xué)試卷(三)(帶解析) 題型:解答題
某研究性學(xué)習(xí)小組在探究矩形的折紙問題時(shí),將一塊直角三角板的直角頂點(diǎn)繞矩形ABCD(AB<BC)的對(duì)角線的交點(diǎn)O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點(diǎn)。
⑴該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請(qǐng)你對(duì)這名成員在圖①和圖③中發(fā)現(xiàn)的結(jié)論選擇其一說明理由。
⑵試探究圖②中BN、CN、CM、DN這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由。
⑶將矩形ABCD改為邊長(zhǎng)為1的正方形ABCD,直角三角板的直角頂點(diǎn)繞O點(diǎn)旋轉(zhuǎn)到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數(shù)量關(guān)系(不需要證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com