精英家教網 > 初中數學 > 題目詳情
某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞著矩形ABCD(DC<BC)的對角線交點O旋轉(如圖①→②),圖中M、N分別為直角三角板的直角邊與三角形DBC的邊CD、BC的交點.
(1)在圖①(三角板的一直角邊與OD重合)中,有CN2+DC2=BN2成立,請說明理由.
(2)試探究圖②中BN、CN、CM、DM這四條線段之間的數量關系,請你用一個等式在橫線上直接表示出探究的結論:
CN2+CM2=DM2+BN2
CN2+CM2=DM2+BN2
.證明你的結論.
分析:(1)作輔助線,連接DN,在Rt△CDN中,根據勾股定理可得:ND2=NC2+CD2,再根據ON垂直平分BD,可得:BN=DN,從而可證:BN2=NC2+CD2
(2)作輔助線,延長MO交AB于點E,可證:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根據勾股定理和對應邊相等,可證:CN2+CM2=DM2+BN2
解答:解:(1)選擇圖①證明:連接DN.
∵四邊形ABCD是矩形,
∴BO=DO,∠DCN=90°,
∵ON⊥BD,∴NB=ND,
∵∠DCN=90°,
∴ND2=NC2+CD2,
∴BN2=NC2+CD2

(2)CM2+CN2=DM2+BN2
證明:理由如下:
延長MO交AB于E,
∵四邊形ABCD是矩形,
∴BO=DO,∠ABC=∠DCB=90°,
∵AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,
∴△BEO≌△DMO,
∴OE=OM,BE=DM,
∵NO⊥EM,
∴NE=NM,
∵∠ABC=∠DCB=90°,
∴NE2=BE2+BN2,NM2=CN2+CM2,
∴CN2+CM2=BE2+BN2,
即CN2+CM2=DM2+BN2
故答案為:CN2+CM2=DM2+BN2
點評:本題考查了圖形的旋轉變化,在解題過程中要綜合應用勾股定理、矩形、正方形的特殊性質及三角形全等的判定等知識.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

24、某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(①?②?③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點.
(1)該學習小組成員意外的發(fā)現圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖①和圖③中發(fā)現的結論選擇其一說明理由.

(2)試探究圖②中BN、CN、CM、DN這四條線段之間的數量關系,寫出你的結論,并說明理由.
(3)將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之間所滿足的數量關系.(不需要證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞著矩形ABCD的對角線交點O旋轉(如圖所示).已知AB=8,BC=10,圖中M、N分別為直角三角板的直角邊與矩形ABCD的邊CD、BC的交點.問:是否存在某一旋轉位置,使得CM+CN等于
445
?若存在,請求出此時DM的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞著矩形ABCD(AB<BC)的對角線交點O旋轉(如圖①→②→③),圖中M、N分別為直角三角板的直角邊與矩形ABCD的邊CD、BC的交點.

(1)該學習小組中一名成員意外地發(fā)現:在圖①(三角板的一直角邊與OD重合)中,BN2=CD2+CN2;在圖③(三角板的一直角邊與OC重合)中,CN2=BN2+CD2.請你對這名成員在圖①和圖③中發(fā)現的結論選擇其一說明理由.
(2)試探究圖②中BN、CN、CM、DM這四條線段之間的關系,寫出你的結論,并說明理由.

查看答案和解析>>

科目:初中數學 來源:2011-2012學年山東威海市八年級下期末模擬數學試卷(三)(帶解析) 題型:解答題

某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點。
⑴該學習小組成員意外的發(fā)現圖①(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖③中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖①和圖③中發(fā)現的結論選擇其一說明理由。

⑵試探究圖②中BN、CN、CM、DN這四條線段之間的數量關系,寫出你的結論,并說明理由。

⑶將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉到圖④,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數量關系(不需要證明)

查看答案和解析>>

同步練習冊答案