【題目】已知:關(guān)于x的方程有實(shí)數(shù)根.

1)求m的取值范圍;

2)若方程的根為有理數(shù),求正整數(shù)m的值.

【答案】14;(2m=3m=4

【解析】

1)根據(jù)一元二次方程根的判別式結(jié)合題意即可求解;

2)根據(jù)(1)的結(jié)論可求出m的取值,然后根據(jù)△為平方數(shù)即可求出m的值.

1)一元二次方程,

,,,

,

∵原方程有實(shí)數(shù)根,

0

解得:4,

m的取值范圍是4;

2)∵m為正整數(shù),

m可取12,34

當(dāng)m=1時(shí),,不是平方數(shù),方程不是有理根;

當(dāng)m=2時(shí),,不是平方數(shù),方程不是有理根;

當(dāng)m=3時(shí),,是平方數(shù),方程為有理根;

當(dāng)m=4時(shí),,是平方數(shù),方程為有理根;

∵方程為有理根,

m=3m=4時(shí),方程為有理根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+4與二次函數(shù)y=ax2+c的圖像的一個(gè)交點(diǎn)坐標(biāo)為(1,2),另一個(gè)交點(diǎn)是該二次函數(shù)圖像的頂點(diǎn)

1)求k,a,c的值;

2)過點(diǎn)A0m)(0m4)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖像相交于B,C兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),記W=OA2+BC2,求W關(guān)于m的函數(shù)解析式,并求W的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)y (x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(-4,0),與y軸交于點(diǎn)C,PBx軸于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于y軸對稱.

(1)求一次函數(shù)、反比例函數(shù)的解析式;

(2)求證:點(diǎn)C為線段AP的中點(diǎn);

(3)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形,如果存在,說明理由并求出點(diǎn)D的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六一期間,小張購進(jìn)100只兩種型號(hào)的文具進(jìn)行銷售,其進(jìn)價(jià)和售價(jià)之間的關(guān)系如下表:

1)小張如何進(jìn)貨,使進(jìn)貨款恰好為1300元?

2)要使銷售文具所獲利潤最大,且所獲利潤不超過進(jìn)貨價(jià)格的40%,請你幫小張?jiān)O(shè)計(jì)一個(gè)進(jìn)貨方案,并求出其所獲利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系xOy中,點(diǎn)A-12)在函數(shù)(x<0)的圖象上.

1)求m的值;

2)過點(diǎn)Ay軸的平行線,直線與直線交于點(diǎn)B,與函數(shù)(x<0)的圖象交于點(diǎn)C,與軸交于點(diǎn)D

①當(dāng)點(diǎn)C是線段BD的中點(diǎn)時(shí),求b的值;

②當(dāng)BC<BD時(shí),直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新冠肺炎的爆發(fā),市場對口罩的需求量急劇增大.某口罩生產(chǎn)商自二月份以來,--直積極恢復(fù)產(chǎn)能,每日口罩生產(chǎn)量(百萬個(gè))與天數(shù)為整數(shù))的函數(shù)關(guān)系圖象如圖所示,而該生產(chǎn)商對口供應(yīng)市場對口罩的需求量<(百萬個(gè))與天數(shù)呈拋物線型,第天市場口罩缺口(需求量與供應(yīng)量差)就達(dá)到(百萬個(gè)),之后若干天,市場口罩需求量不斷上升,在第天需求量達(dá)到最高峰(百萬個(gè))

求出的函數(shù)解析式;

當(dāng)市場供應(yīng)量不小于需求量時(shí),市民買口罩才無需提前預(yù)約,那么在整個(gè)二月份,市民無需預(yù)約即可購買口罩的天數(shù)共有多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)如今”微信運(yùn)動(dòng)“被越來越多的人關(guān)注和喜愛,某數(shù)學(xué)興趣小組隨機(jī)調(diào)查了該校50名教師某日“微信運(yùn)動(dòng)“中的行走步數(shù)情況,并將統(tǒng)計(jì)的數(shù)據(jù)繪制成了如下兩幅不完整的統(tǒng)計(jì)圖表.請根據(jù)以上信息,解答下列問題:

1)求出ab,c,d的值,并補(bǔ)全頻數(shù)分布直方圖.

2)本市約有58000名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行步數(shù)超過12000步(包含12000步)的教師有多少名?

3)若在被調(diào)查的50名教師中.選取日行步數(shù)超過16000步(包含16000步)的兩名教師與大家分享心得,求被選取的兩名教師的日行走步數(shù)恰好都在20000步(包含20000步)以上的概率.

步數(shù)(x

頻數(shù)

頻率

0x4000

a

0.16

4000x8000

15

0.3

8000x12000

b

0.24

12000x16000

10

c

16000x20000

3

0.06

2000x24000

2

d

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地有甲、乙兩棟建筑物,小明于乙樓樓頂A點(diǎn)處看甲樓樓底D點(diǎn)處的俯角為45°,走到乙樓B點(diǎn)處看甲樓樓頂E點(diǎn)處的俯角為60°,已知AB=6m,DE=10m.求乙樓的高度AC的長.(參考數(shù)據(jù):,,精確到0.1m.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過點(diǎn)B(1,0)的拋物線y軸交于點(diǎn)C,其頂點(diǎn)為點(diǎn)G,過點(diǎn)Cy軸的垂線交拋物線對稱軸于點(diǎn)D,線段CO上有一動(dòng)點(diǎn)M,連接DM、DG

1)求拋物線的表達(dá)式;

2)求的最小值以及相應(yīng)的點(diǎn)M的坐標(biāo);

3)如圖2,在(2)的條件下,以點(diǎn)A(20)為圓心,以AM長為半徑作圓交x軸正半軸于點(diǎn)E.在y軸正半軸上有一動(dòng)點(diǎn)P,直線PF與⊙A相切于點(diǎn)F,連接EFy軸于點(diǎn)N,當(dāng)PFBM時(shí),求PN的長.

查看答案和解析>>

同步練習(xí)冊答案