【題目】一個(gè)兩位數(shù),個(gè)位上是a,十位上是b,用代數(shù)式表示這個(gè)兩位數(shù)是( )
A.ab
B.ba
C.10b+a
D.10a+b

【答案】C
【解析】解:個(gè)位上是a,十位上是b,用代數(shù)式表示為10b+a,故答案為:C.

根據(jù)兩位數(shù)=十位數(shù)字×10+個(gè)位數(shù)字,表示就行。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中錯(cuò)誤的是(  )

A. 三角形的中線、角平分線、高都是線段

B. 任意三角形的內(nèi)角和都是 180°

C. 多邊形的外角和等于 360°

D. 三角形的一個(gè)外角大于任何一個(gè)內(nèi)角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某日王老師佩戴運(yùn)動(dòng)手環(huán)進(jìn)行快走鍛煉,兩次鍛煉后數(shù)據(jù)如表.與第一次鍛煉相比,王老師第二次鍛煉步數(shù)增長(zhǎng)的百分率是其平均步長(zhǎng)減少的百分率的3倍.設(shè)王老師第二次鍛煉時(shí)平均步長(zhǎng)減少的百分率為

項(xiàng)目

第一次鍛煉

第二次鍛煉

步數(shù)()

10000

____________

平均步長(zhǎng)(/)

0.6

____________

距離()

6000

7020

注:步數(shù)×平均步長(zhǎng)=距離.

(1)根據(jù)題意完成表格填空;

(2)x;

(3)王老師發(fā)現(xiàn)好友中步數(shù)排名第一為24000步,因此在兩次鍛煉結(jié)束后又走了500米,使得總步數(shù)恰好為24000步,求王老師這500米的平均步長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx﹣cx軸交A﹣10)、B3,0)兩點(diǎn),直線l與拋物線交于AC兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2

1)求拋物線及直線AC的函數(shù)表達(dá)式;

2)點(diǎn)M是線段AC上的點(diǎn)(不與AC重合),過(guò)MMFy軸交拋物線于F,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MF的長(zhǎng);

3)在(2)的條件下,連接FAFC,是否存在m,使AFC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位選手各10次射擊成績(jī)的平均數(shù)和方差,統(tǒng)計(jì)如下表:

選手

平均數(shù)

9.3

9.3

9.3

方差

0.026

0.015

0.032

則射擊成績(jī)最穩(wěn)定的選手是 . (填“甲”、“乙”、“丙”中的一個(gè))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式能用完全平方公式進(jìn)行分解因式的是( )
A.x2+1
B.x2+2x﹣1
C.x2+x+1
D.x2+4x+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的兩邊長(zhǎng)為4,8,則第三邊的長(zhǎng)度可以是(寫(xiě)出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.

(1)求證:△ABE≌△CDF;

(2)若AB=DB,猜想:四邊形DFBE是什么特殊的四邊形?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案