如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側面進行包貼(要求包貼時沒有重疊部分),紙帶在側面纏繞三圈,正好將這個三棱柱包裝盒的側面全部包貼滿.

(1)請在圖2中,計算裁剪的角度∠BAD;

(2)計算按圖3方式包貼這個三棱柱包裝盒所需的矩形紙帶的長度.

 

【答案】

 

(1)30°

(2)cm

【解析】(1)由圖2的包貼方法知:AB的長等于三棱柱的底邊周長,∴AB=30

    ∵紙帶寬為15,∴sin∠DAB=sin∠ABM=,∴∠DAB=30°.

    (2)在圖3中,將三棱柱沿過點A的側棱剪開,得到如圖甲的側面展開圖,

        將圖甲種的△ABE向左平移30cm,△CDF向右平移30cm,拼成如圖乙中的□ABCD,

        此平行四邊形即為圖2中的□ABCD

        由題意得,知:BC=BE+CE=2CE=2×,

        ∴所需矩形紙帶的長為MB+BC=30·cos30°+=cm.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側面進行包貼(要求包貼時沒有重疊部分),紙帶在側面纏繞三圈,正好將這個三棱柱包裝盒的側面全部包貼滿.
(1)請在圖2中,計算裁剪的角度∠BAD;
(2)計算按圖3方式包貼這個三棱柱包裝盒所需的矩形紙帶的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側面進行包貼(要求包貼時沒有重疊部分),紙帶在側面纏繞三圈,正好將這個三棱柱包裝盒的側面全部包貼滿.在圖3中,將三棱柱沿過點A的側棱剪開,得到如圖4的側面展開圖.為了得到裁剪的角度,我們可以根據(jù)展開圖拼接出符合條件的平行四邊形進行研究.
(1)請在圖4中畫出拼接后符合條件的平行四邊形;
(2)請在圖2中,計算裁剪的角度(即∠ABM的度數(shù)).精英家教網(wǎng)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側面進行包貼(要求包貼時沒有重疊部分),紙帶在側面纏繞三圈,正好將這個三棱柱包裝盒的側面全部包貼滿.在圖3中,將三棱柱沿過點A的側棱剪開,得到如圖4的側面展開圖.為了得到裁剪的角度,我們可以根據(jù)展開圖拼接出符合條件的平行四邊形進行研究.

1.(1)請在圖4中畫出拼接后符合條件的平行四邊形;

2.(2)請在圖2中,計算裁剪的角度(即∠ABM的度數(shù)).

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側面進行包貼(要求包貼時沒有重疊部分),紙帶在側面纏繞三圈,正好將這個三棱柱包裝盒的側面全部包貼滿.
(1)請在圖2中,計算裁剪的角度∠BAD;
(2)計算按圖3方式包貼這個三棱柱包裝盒所需的矩形紙帶的長度.

查看答案和解析>>

同步練習冊答案