【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.

(1)若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是

(2)若甲、乙均可在本層移動.

①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對稱圖形的概率.

②黑色方塊所構(gòu)拼圖是中心對稱圖形的概率是

【答案】(1);(2);

【解析】

試題分析:(1)若乙固定在E處,求出移動甲后黑色方塊構(gòu)成的拼圖一共有多少種可能,其中是軸對稱圖形的有幾種可能,由此即可解決問題.

(2)①畫出樹狀圖即可解決問題.

②不可能出現(xiàn)中心對稱圖形,所以概率為0.

試題解析:(1)若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖一共有3種可能,其中有兩種情形是軸對稱圖形,所以若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是

故答案為:

(2)①由樹狀圖可知,黑色方塊所構(gòu)拼圖是軸對稱圖形的概率==

②黑色方塊所構(gòu)拼圖中是中心對稱圖形有兩種情形,①甲在B處,乙在F處,②甲在C處,乙在E處,所以黑色方塊所構(gòu)拼圖是中心對稱圖形的概率是.故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE∥AD,若AC=2,CE=4,則四邊形ACEB的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形的兩邊長分別為4 cm,9 cm,則等腰三角形的周長為____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷售,每年產(chǎn)銷x件.已知產(chǎn)銷兩種產(chǎn)品的有關(guān)信息如表:

其中a為常數(shù),且3a5

(1)若產(chǎn)銷甲、乙兩種產(chǎn)品的年利潤分別為萬元、萬元,直接寫出、與x的函數(shù)關(guān)系式;

(2)分別求出產(chǎn)銷兩種產(chǎn)品的最大年利潤;

(3)為獲得最大年利潤,該公司應(yīng)該選擇產(chǎn)銷哪種產(chǎn)品?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列比較大小正確的是( )
A.﹣(﹣3)<+(﹣3)
B.
C.﹣|﹣12|>11
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算
(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19);
(2) ;
(3) ;
(4)若“三角” 表示運算a﹣b+c,若“方框” 表示運算x﹣y+z+w,求 × 的值,列出算式并計算結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(14分)在平面直角坐標(biāo)系中,已知點A(﹣2,0),B(2,0),C(3,5).

(1)求過點A,C的直線解析式和過點A,B,C的拋物線的解析式;

(2)求過點A,B及拋物線的頂點D的P的圓心P的坐標(biāo);

(3)在拋物線上是否存在點Q,使AQ與P相切,若存在請求出Q點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題(2)利用乘法分配律及去括號法則先去括號,然后再合并同類項即可;
(1)計算
(2)化簡
(3)解方程
(4)先化簡,再求值 ,其中a=2,b=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且SBOC=2,求點C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案