(1999•煙臺)如圖,在Rt△ABC中,∠CAB=90°,AD⊥BC于點D,∠ACB的平分線交AD于點E,交AB于點F,則△AEF是( )

A.等邊三角形
B.等腰三角形
C.不等邊三角形
D.無法確定
【答案】分析:根據(jù)題意在△ACF中,∠CAB=90°,由三角形內(nèi)角和定理得出∠ACF+∠AFE=90°;在△CED中,∠CDE=90°,由三角形內(nèi)角和定理得出∠ECD+∠CED=90°;由于∠CED與∠AEF為對頂角,所以∠CED=∠AEF,代換得出∠AEF+∠ECD=90°;CF為∠ACB的平分線,所以∠ACF=∠ECD.根據(jù)上述三個數(shù)量關(guān)系得出△AEF中∠AEF于∠AFE的關(guān)系.
解答:解:根據(jù)題意在△ACF中,∠ACF+∠AFE=90°
在△CED中,∠ECD+∠CED=90°
∵∠CED=∠AEF,∠ACF=∠ECD
∴∠AEF+∠ECD=90°
∴∠AFE=∠AEF
∴△AEF為等腰三角形
故選B.
點評:本題考查了直角三角形的內(nèi)角和、對頂角的性質(zhì),等腰三角形的判定定理.利用等角的余角相等是正確解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•煙臺)如圖,四邊形AOBC是矩形,點A的坐標是(0,3),點B的坐標是(4,0),動點P,Q同時從點O出發(fā),P沿折線OACB的方向運動,Q沿折線OBCA的方向運動.
(1)若P的運動速度是Q的3倍,點P運動到AC邊上,連接PQ交OC于點R,且OR=2,求直線PQ的函數(shù)關(guān)系式;
(2)若P的運動速度是每秒個單位長度,Q的運動速度是個單位長度,運動到相遇時停止,設△OPQ的面積為S,運動時間為t秒,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1999•煙臺)如圖,已知拋物線y=ax2+bx+交x軸正半軸于A,B兩點,交y軸于點C,且∠CBO=60°,∠CAO=45°,求拋物線的解析式和直線BC的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•煙臺)如圖,已知拋物線y=ax2+bx+交x軸正半軸于A,B兩點,交y軸于點C,且∠CBO=60°,∠CAO=45°,求拋物線的解析式和直線BC的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年山東省煙臺市中考數(shù)學試卷(解析版) 題型:解答題

(1999•煙臺)如圖,四邊形AOBC是矩形,點A的坐標是(0,3),點B的坐標是(4,0),動點P,Q同時從點O出發(fā),P沿折線OACB的方向運動,Q沿折線OBCA的方向運動.
(1)若P的運動速度是Q的3倍,點P運動到AC邊上,連接PQ交OC于點R,且OR=2,求直線PQ的函數(shù)關(guān)系式;
(2)若P的運動速度是每秒個單位長度,Q的運動速度是個單位長度,運動到相遇時停止,設△OPQ的面積為S,運動時間為t秒,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年山東省煙臺市中考數(shù)學試卷(解析版) 題型:解答題

(1999•煙臺)如圖,已知拋物線y=ax2+bx+交x軸正半軸于A,B兩點,交y軸于點C,且∠CBO=60°,∠CAO=45°,求拋物線的解析式和直線BC的解析式.

查看答案和解析>>

同步練習冊答案