精英家教網 > 初中數學 > 題目詳情
(1999•煙臺)如圖,已知拋物線y=ax2+bx+交x軸正半軸于A,B兩點,交y軸于點C,且∠CBO=60°,∠CAO=45°,求拋物線的解析式和直線BC的解析式.

【答案】分析:根據拋物線的解析式,易求得C點的坐標,即可得到OC的長;可分別在Rt△OBC和Rt△OAC中,通過解直角三角形求出OB、OA的長,即可得到A、B的坐標,進而可運用待定系數法求得拋物線和直線的解析式.
解答:解:由題意得C(0,
在Rt△COB中,
∵∠CBO=60°,
∴OB=OC•cot60°=1
∴B點的坐標是(1,0);(1分)
在Rt△COA中,∵∠CAO=45°,
∴OA=OC=
∴A點坐標(,0)
由拋物線過A、B兩點,
解得
∴拋物線解析式為y=x2-()x+(4分)
設直線BC的解析式為y=mx+n,
得n=,m=-
∴直線BC解析式為y=-x+.(6分)
點評:此題主要考查的是用待定系數法求一次函數及二次函數解析式的方法.
練習冊系列答案
相關習題

科目:初中數學 來源:1999年全國中考數學試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•煙臺)如圖,四邊形AOBC是矩形,點A的坐標是(0,3),點B的坐標是(4,0),動點P,Q同時從點O出發(fā),P沿折線OACB的方向運動,Q沿折線OBCA的方向運動.
(1)若P的運動速度是Q的3倍,點P運動到AC邊上,連接PQ交OC于點R,且OR=2,求直線PQ的函數關系式;
(2)若P的運動速度是每秒個單位長度,Q的運動速度是個單位長度,運動到相遇時停止,設△OPQ的面積為S,運動時間為t秒,求S與t之間的函數關系式.

查看答案和解析>>

科目:初中數學 來源:1999年全國中考數學試題匯編《一次函數》(02)(解析版) 題型:解答題

(1999•煙臺)如圖,已知拋物線y=ax2+bx+交x軸正半軸于A,B兩點,交y軸于點C,且∠CBO=60°,∠CAO=45°,求拋物線的解析式和直線BC的解析式.

查看答案和解析>>

科目:初中數學 來源:1999年山東省煙臺市中考數學試卷(解析版) 題型:解答題

(1999•煙臺)如圖,四邊形AOBC是矩形,點A的坐標是(0,3),點B的坐標是(4,0),動點P,Q同時從點O出發(fā),P沿折線OACB的方向運動,Q沿折線OBCA的方向運動.
(1)若P的運動速度是Q的3倍,點P運動到AC邊上,連接PQ交OC于點R,且OR=2,求直線PQ的函數關系式;
(2)若P的運動速度是每秒個單位長度,Q的運動速度是個單位長度,運動到相遇時停止,設△OPQ的面積為S,運動時間為t秒,求S與t之間的函數關系式.

查看答案和解析>>

科目:初中數學 來源:1999年山東省煙臺市中考數學試卷(解析版) 題型:解答題

(1999•煙臺)如圖,已知拋物線y=ax2+bx+交x軸正半軸于A,B兩點,交y軸于點C,且∠CBO=60°,∠CAO=45°,求拋物線的解析式和直線BC的解析式.

查看答案和解析>>

同步練習冊答案