28、如圖a是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖b的形狀,拼成一個(gè)正方形.
(1)圖b中的陰影部分面積為
m2-2mn+n2或(m-n)2
;
(2)觀察圖b,請你寫出三個(gè)代數(shù)式(m+n)2,(m-n)2,mn之間的等量關(guān)系是
(m+n)2
=
(m-n)2
+4mn
;
(3)若x+y=-6,xy=2.75,利用(2)提供的等量關(guān)系計(jì)算:x-y=
±5
;
(4)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖C,它表示了
2m2+3mn+n2=(2m+n)(m+n),試畫出一個(gè)幾何圖形的面積是a2+4ab+3b2,并能利用這個(gè)
圖形將a2+4ab+3b2進(jìn)行因式分解.
分析:(1)陰影部分的面積等于邊長為m+n的正方形的面積減去4個(gè)長為m,寬為n的長方形的面積;
(2)直接利用正方形的面積的兩種求法作為相等關(guān)系列式子即可;
(3)先畫圖,再利用圖象所展示的位置關(guān)系和數(shù)量關(guān)系列式子即可.
解答:解:操作設(shè)計(jì)(本題共12分)
(1)m2-2mn+n2或(m-n)2;(2分)

(2)(m+n)2=(m-n)2+4mn;(2分)

(3)∵(x-y)2=(x+y)2-4xy=36-9=25
∴x-y=±5;(2分)

(4)a2+4ab+3b2=(a+b)(a+3b).
(3分)
點(diǎn)評:主要考查了分解因式與幾何圖形之間的聯(lián)系,從幾何的圖形來解釋分解因式的意義.解此類題目的關(guān)鍵是正確的分析圖列,找到組成圖形的各個(gè)部分,并用面積的兩種求法作為相等關(guān)系列式子.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)你認(rèn)為圖2中的陰影部分的正方形的邊長等于多少?

(2)請用兩種不同的方法求圖14中陰影部分的面積.
方法1:
(m+n)2-4mn

方法2:
(m-n)2

(3)觀察圖2你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?代數(shù)式:(m+n)2,(m-n)2,mn.
(m+n)2=(m-n)2+4mn

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,則(a-b)2=
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖1是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個(gè)空心正方形.
(1)你認(rèn)為圖2中的陰影部分的正方形的邊長是多少?
(2)請用兩種不同的方法求出圖2中陰影部分的面積;
(3)觀察圖2,你能寫出下列三個(gè)代數(shù)式:(m+n)2、(m-n)2、mn之間的關(guān)系嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖a是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖b形狀拼成一個(gè)正方形.
(1)你認(rèn)為圖b中的陰影部分的正方形的邊長等于多少?
(2)觀察圖b你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(m+n)2,(m-n)2,mn
(3)已知m+n=7,mn=6,求(m-n)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖①,是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)觀察圖②,你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?代數(shù)式:(m+n)2,(m-n)2,mn
(2)根據(jù)(1)題中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,則(a-b)2=
29

查看答案和解析>>

同步練習(xí)冊答案