【題目】正方形 ABCD 中,AB=3cm,動點 M A 點出發(fā)沿 AB 方向以每秒 1cm 的速度運動,同時點 N D 點出發(fā)沿折線 DC→CB 以每秒 2cm 的速度運動,到達 B 點時運動同時停止,設(shè)AMN 的面積為 y(cm2),運動時間為 x(秒),則下列圖象中能大致反映 y x 之間函數(shù)關(guān)系的是(

A.B.C.D.

【答案】A

【解析】

分兩部分計算y的關(guān)系式:①當(dāng)點NCD上時,易得SAMN的關(guān)系式,SAMN的面積關(guān)系式為一個一次函數(shù);②當(dāng)點NCB上時,底邊AM不變,表示出SAMN的關(guān)系式,SAMN的面積關(guān)系式為一個開口向下的二次函數(shù).

∵點ND點出發(fā)沿折線DCCB以每秒2cm的速度運動,到達B點時運動同時停止,

NC的時間為:t=3÷2=1.5

分兩部分:

①當(dāng)0x1.5時,如圖1,此時NDC上,

SAMN=y=AM×AD=x×3=x,SAMN的面積關(guān)系式為一個一次函數(shù)

②當(dāng)1.5<x3,如圖2,此時NBC,

DC+CN=2x,

BN=62x,

SAMN=y=AM×BN=x(62x)=x2+3x,SAMN的面積關(guān)系式為一個開口向下的二次函數(shù).

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC中,∠C=90°,線段DE在射線BC上,且DE=AC,線段DE沿射線BC運動,開始時,點D與點B重合,點D到達點C時運動停止,過點D作DF=DB,與射線BA相交于點F,過點E作BC的垂線,與射線BA相交于點G.設(shè)BD=x,四邊形DEGF與△ABC重疊部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x≤m,1<x≤m,m<x≤3時,函數(shù)的解析式不同)

(1)填空:BC的長是

(2)求S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:ABC,ABC=90°,AB=BC=8cm,動點P從點A出發(fā),2cm/s的速度沿射線AB運動,同時動點Q從點C出發(fā),2cm/s的速度沿邊BC的延長線運動,PQ與直線AC相交于點D.設(shè)P點運動時間為t,PCQ的面積為S cm2

(1)直接寫出AC的長:AC= cm

(2)求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)點P運動幾秒時,SPCQ=SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進價之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.

(1)求甲、乙兩種蘋果的進價分別是每千克多少元?

(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線與直線y=x+3分別交于x軸和y軸上同一點,交點分別是點A和點C,且拋物線的對稱軸為直線x=-2

1)求出拋物線與x軸的兩個交點A、B的坐標.

2)試確定拋物線的解析式.

3)觀察圖象,請直接寫出二次函數(shù)值小于一次函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級(8)班的4名同學(xué)聯(lián)合設(shè)計了一份調(diào)查問卷,對該校部分學(xué)生進行了隨機調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式) 設(shè)置選項,要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息, 解答下列問題:

1)本次接受調(diào)查的總?cè)藬?shù)是 人, 并把條形統(tǒng)計圖補充完整;

2)在扇形統(tǒng)計圖中,步行的人數(shù)所占的百分比是 ,其他方式所在扇形的圓心角度數(shù)是

3)已知這4名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報調(diào)查結(jié)果.請你用列表法或畫樹狀圖的方法, 求出恰好選出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的一元二次方程

1)若該方程有兩個實數(shù)根,求的取值范圍.

2)在(1)的條件下,取符合題意的最大整數(shù),求一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在“愛護地球,綠化祖國”的活動中,組織同學(xué)開展植樹造林活動,為了了解全校同學(xué)的植樹情況,學(xué)校隨機抽查了一部分同學(xué)的植樹情況,將調(diào)查數(shù)據(jù)整理繪制成如下所示的統(tǒng)計圖.下面有四個推斷:這次調(diào)查獲取的樣本數(shù)據(jù)的樣本容量是100這次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是6棵;這次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是4棵;這次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)是8棵.其中合理的是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時,y>0,其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案