在Rt△ABC中,∠C=90°,AB=5,AC=4,點D是斜邊AB的中點,把△ABC繞點C旋轉,使得點B落在射線CD上,點A落在點A′.那么AA′的長是________.


分析:先根勾股定理計算出BC=3,由點D是斜邊AB的中點,根據(jù)直角三角形斜邊上的中線等于斜邊的一半得DC=DB,則∠DCB=∠B,再根據(jù)旋轉的性質得∠B=∠B′,CA=CA′=4,AB=A′B′=5,∠ACB=∠A′CB′=90°,則∠B′=∠DCB,得到A′B′∥BC,所以A′B′⊥AC,利用面積法克計算出CE=,AE=AC-CE=4-=,然后在Rt△A′CE中,利用勾股定理計算出A′E=,再在Rt△AA′E中利用勾股定理可計算出AA′.
解答:設AC與A′B′的交點為E,如圖,
∵∠C=90°,AB=5,AC=4,
∴BC==3,
∵點D是斜邊AB的中點,
∴DC=DB,
∴∠DCB=∠B,
∵△ABC繞點C旋轉,使得點B落在射線CD上,點A落在點A′,
∴∠B=∠B′,CA=CA′=4,AB=A′B′=5,∠ACB=∠A′CB′=90°,
∴∠B′=∠DCB,
∴A′B′∥BC,
而∠ACB=90°,
∴A′B′⊥AC,
CE•A′B′=A′C•CB′,
∴CE=,
∴AE=AC-CE=4-=
在Rt△A′CE中,A′E==,
在Rt△AA′E中,AA′===
故答案為
點評:本題考查了旋轉的性質:旋轉前后兩圖形全等;對應點到旋轉中心的距離相等;對應點與旋轉中心的連線段的夾角等于旋轉角.也考查了直角三角形斜邊上的中線性質以及勾股定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習冊答案