如圖,在平面直角坐標(biāo)系中,△ABC是⊙O的內(nèi)接三角形,AB=AC,點(diǎn)P是的中點(diǎn),連接PA,PB,PC.
(1)如圖①,若∠BPC=60°,求證:;
(2)如圖②,若,求的值.
(1)先根據(jù)圓周角定理可得∠BAC=∠BPC=60°,即可證得△ABC為等邊三角形,則可得∠ACB=60°,由點(diǎn)P是弧AB的中點(diǎn),可得∠ACP=30°,再結(jié)合∠APC=∠ABC=60°即可求得結(jié)果;(2)
【解析】
試題分析:(1)先根據(jù)圓周角定理可得∠BAC=∠BPC=60°,即可證得△ABC為等邊三角形,則可得∠ACB=60°,由點(diǎn)P是弧AB的中點(diǎn),可得∠ACP=30°,再結(jié)合∠APC=∠ABC=60°即可求得結(jié)果;
(2)連接AO并延長(zhǎng)交PC于F,過(guò)點(diǎn)E作EG⊥AC于G,連接OC.由AB=AC可得AF⊥BC,BF=CF.由點(diǎn)P是弧AB中點(diǎn)可得∠ACP=∠PCB,即可得到EG=EF.由∠BPC=∠FOC可得sin∠FOC=sin∠BPC=.設(shè)FC=24a,根據(jù)勾股定理可得OC=OA=25a,則OF=7a,AF=32a.在Rt△AFC中,根據(jù)勾股定理可表示出AC的長(zhǎng),在Rt△AGE和Rt△AFC中,根據(jù)三角函數(shù)的定義求解即可.
(1)∵弧BC=弧BC
∴∠BAC=∠BPC=60°.
又∵AB=AC,
∴△ABC為等邊三角形
∴∠ACB=60°,
∵點(diǎn)P是弧AB的中點(diǎn),
∴∠ACP=30°,
又∠APC=∠ABC=60°,
∴AC=AP;
(2)連接AO并延長(zhǎng)交PC于F,過(guò)點(diǎn)E作EG⊥AC于G,連接OC.
∵AB=AC,
∴AF⊥BC,BF=CF.
∵點(diǎn)P是弧AB中點(diǎn),
∴∠ACP=∠PCB,
∴EG=EF.
∵∠BPC=∠FOC,
∴sin∠FOC=sin∠BPC=.
設(shè)FC=24a,則OC=OA=25a,
∴OF=7a,AF=32a.
在Rt△AFC中,AC2=AF2+FC2,
∴AC=40a.
在Rt△AGE和Rt△AFC中,sin∠FAC=,
∴,
∴EG=12a.
∴tan∠PAB=tan∠PCB=.
考點(diǎn):圓的綜合題
點(diǎn)評(píng):此類問(wèn)題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見(jiàn),一般以壓軸題形式出現(xiàn),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com