分析 (1)由過AC的中點(diǎn)O作EF⊥AC,根據(jù)線段垂直平分線的性質(zhì),可得AF=CF,AE=CE,OA=OC,然后由四邊形ABCD是矩形,易證得△AOF≌△COE,則可得AF=CE,繼而證得結(jié)論;
(2)由四邊形ABCD是矩形,易求得CD的長,然后利用三角函數(shù)求得CF的長,繼而求得答案.
解答 (1)證明:∵O是AC的中點(diǎn),且EF⊥AC,
∴AF=CF,AE=CE,OA=OC,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠AFO=∠CEO,
在△AOF和△COE中,
$\left\{\begin{array}{l}{∠AFO=∠CEO}\\{∠AOF=∠COE}\\{OA=OC}\end{array}\right.$,
∴△AOF≌△COE(AAS),
∴AF=CE,
∴AF=CF=CE=AE,
∴四邊形AECF是菱形;
(2)解:∵四邊形ABCD是矩形,
∴CD=AB=$\sqrt{3}$,
在Rt△CDF中,cos∠DCF=$\frac{CD}{CF}$,∠DCF=30°,
∴CF=$\frac{CD}{cos30°}$=2,
∵四邊形AECF是菱形,
∴CE=CF=2,
∴四邊形AECF是的面積為:EC•AB=2$\sqrt{3}$.
點(diǎn)評 此題考查了矩形的性質(zhì)、菱形的判定與性質(zhì)以及三角函數(shù)等知識.注意證得△AOF≌△COE是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 3 |
E | 9500≤x<10500 | n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 7,6 | B. | 6,5 | C. | 5,6 | D. | 6,6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 23 | B. | 24 | C. | 26 | D. | 29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-ab)2=a2b2 | B. | a•a3=a3 | C. | a6÷a2=a3 | D. | 2a+3b=5ab |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com