【題目】如圖,在東西方向的海岸線兩艘船,均收到已觸礁擱淺的船的求救信號,已知船在船的北偏東58°方向,船在船的北偏西35°方向,且的距離為30海里.觀察圖形并回答問題:(參考數(shù)據(jù):,,,

1)求船到海岸線的距離(精確到0.1海里);

2)若船、船分別以20海里/小時、15海里/小時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船.

【答案】115.9海里;(2)見解析

【解析】

(1)過點P作PE⊥AB于點E,在Rt△APE中解出PE即可;
(2)在Rt△BPF中,求出BP,分別計算出兩艘船需要的時間,即可作出判斷.

1)過點于點,

由題意得,海里,

看,,

海里;

2)在中,海里,,

船需要的時間為:小時,

船需要的時間為:小時,

因為,

船先到達.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)與y軸交于點C,與x軸交于A、B兩點,其中點A的坐標為(40),拋物線的對稱軸交x軸于點D,CEAB,并與拋物線的對稱軸交于點E,F(xiàn)有下列結論:①b2-4ac0;②b>0;③5a+b>0;④BD+CE=4.其中結論正確的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形紙片中,,將紙片沿對角線對折,邊與邊交于點,此時,恰為等邊三角形,則重疊面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料,并解決問題:

1)如圖①等邊△ABC內有一點P,若點P到頂點A、BC的距離分別為3,4,5,求∠APB的度數(shù).

為了解決本題,我們可以將△ABP繞頂點A旋轉到△ACP處,此時△ACP≌△ABP,這樣就可以利用旋轉變換,將三條線段PAPBPC轉化到一個三角形中,從而求出∠APB__________;

2)基本運用

請你利用第(1)題的解答思想方法,解答下面問題:

已知如圖②,△ABC中,∠CAB90°,ABAC,E、FBC上的點且∠EAF45°,求證:EF2BE2+FC2

3)能力提升

如圖③,在RtABC中,∠C90°,AC1,∠ABC30°,點ORtABC內一點,連接AO,BO,CO,且∠AOC=∠COB=∠BOA120°,求OA+OB+OC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次測量旗桿高度的活動中,某數(shù)學興趣小組使用的方案如下:AB表示某同學從眼睛到腳底的距離,CD表示一根標桿,EF表示旗桿,AB,CD,EF都垂直于地面,若AB=1.6米,CD=2米,人與標桿之間的距離BD=1米,標桿與旗桿之間的距離DF=30米,求旗桿EF的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過點A(﹣10),C03.

1)求二次函數(shù)的解析式;

2)在圖中,畫出二次函數(shù)的圖象;

3)根據(jù)圖象,直接寫出當y≤0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點,ABC=60°.若動點E以2cm/s的速度從A點出發(fā)沿著A→B→A方向運動,設運動時間為t(s)(0≤t<3),連接EF,當BEF是直角三角形時,t(s)的值為【 】

A. B.1 C或1 D.或1或

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小紅家的陽臺上放置了一個曬衣架如圖①.圖②是曬衣架的側面示意圖,立桿AB,CD相交于點OB,D兩點立于地面.經(jīng)測量:ABCD=136 cm,OAOC=51 cm,OEOF=34 cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條線段EF=32 cm.垂掛在衣架上的連衣裙總長度小于________cm,連衣裙才不會拖落到地面上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為.連接AC,BCDB,DC,

(1)求拋物線的函數(shù)表達式;

(2)△BCD的面積等于△AOC的面積的時,求的值;

(3)(2)的條件下,若點M軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點BD,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案