7.已知等邊三角形ABC的高為4,在這個(gè)三角形所在的平面內(nèi)有一點(diǎn)P,若點(diǎn)P到AB的距離是1,點(diǎn)P到AC的距離是2,則點(diǎn)P到BC的最小距離為1.

分析 根據(jù)題意畫出相應(yīng)的圖形,直線DM與直線NF都與AB的距離為1,直線NG與直線ME都與AC的距離為2,當(dāng)P與N重合時(shí),HN為P到BC的最小距離;當(dāng)P與M重合時(shí),MQ為P到BC的最大距離,根據(jù)題意得到△NFG與△MDE都為等邊三角形,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出DB與FB的長,以及CG與CE的長,由BC-BF-CG求出FG的長,求出等邊三角形NFG的高,即可確定出點(diǎn)P到BC的最小距離.

解答 解:根據(jù)題意畫出相應(yīng)的圖形,直線DM與直線NF都與AB的距離為1,直線NG與直線ME都與AC的距離為2,
當(dāng)P與N重合時(shí),HN為P到BC的最小距離;
根據(jù)題意得:BC=AB=$\frac{4}{sin60°}$=$\frac{8\sqrt{3}}{3}$,△NFG與△MDE都為等邊三角形,
∴DB=BF=$\frac{1}{sin60°}$=$\frac{2\sqrt{3}}{3}$,CE=CG=$\frac{2}{sin60°}$=$\frac{4\sqrt{3}}{3}$,
∴FG=BC-BF-CG=$\frac{8\sqrt{3}}{3}$-$\frac{2\sqrt{3}}{3}$-$\frac{4\sqrt{3}}{3}$=$\frac{2\sqrt{3}}{3}$,
∴NH=$\frac{\sqrt{3}}{2}$FG=1,即點(diǎn)P到BC的最小距離是1;
故答案為:1.

點(diǎn)評 此題考查了等邊三角形的性質(zhì),以及平行線間的距離,作出相應(yīng)的圖形是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.若x2+y2=5,xy=2,求下列各式的值;
(1)(x+y)2=9(直接寫出結(jié)果)
(2)x-y
(3)$\frac{y}{x}-\frac{x}{y}$=±$\frac{3}{2}$(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,則∠ADB的度數(shù)是( 。
A.60°B.50°C.45°D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.關(guān)于x的方程(a-2)${x}^{{a}^{2}-2}$+3ax+1=0是一元二次方程,則a=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,∠1=∠2,若要使△ABD≌△ACD,則要添加的一個(gè)條件不能是( 。
A.AB=ACB.BD=CDC.∠BAD=∠CADD.∠B=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.某賓館客房部有60個(gè)房間供游客居住,當(dāng)每個(gè)房間的定價(jià)為每天200元時(shí),所有房間剛好可以住滿,根據(jù)經(jīng)驗(yàn)發(fā)現(xiàn),每個(gè)房間的定價(jià)每增加10元,就會(huì)有1個(gè)房間空閑,對有游客入住的房間,賓館需對每個(gè)房間支出每天20元的各種費(fèi)用.設(shè)每個(gè)房間的定價(jià)增加x元,每天的入住量為y個(gè),客房部每天的利潤為w元.
(1)求y與x的函數(shù)關(guān)系式;
(2)求w與x的函數(shù)關(guān)系式,并求客房部每天的最大利潤是多少?
(3)當(dāng)x為何值時(shí),客房部每天的利潤不低于14000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的有(  )
①0是最小的正數(shù);
②任意一個(gè)正數(shù),前面加上一個(gè)“-”號,就是一個(gè)負(fù)數(shù);
③大于0的數(shù)是正數(shù);
④字母a既是正數(shù),又是負(fù)數(shù).
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.計(jì)算:(-2)3-|-5|=-13.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.若單項(xiàng)式-2amb7與5a2b2m+n是同類項(xiàng),則(-m)n的值是(  )
A.2B.6C.8D.-8

查看答案和解析>>

同步練習(xí)冊答案