【題目】大學(xué)畢業(yè)生小李自主創(chuàng)業(yè),開了一家小商品超市.已知超市中某商品的進價為每件20元,售價為每件30元,每個月可賣出180件;如果每件商品的售價每上漲1元,則每個月就會少賣出10件,但每件售價必須低于34元,設(shè)每件商品的售價上漲元(為非負(fù)整數(shù)),每個月的銷售利潤為.

1)求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

2)利用函數(shù)關(guān)系式求出每件商品的售價為多少元時,每個月可獲得最大利潤?最大利潤是多少?

3)利用函數(shù)關(guān)系式求出每件商品的售價定為多少元時,每個月的利潤恰好是1920元?這時每件商品的利潤率是多少?

【答案】1;(2)每件商品的售價為33元時,商品的利潤最大為1950元;(3)售價為32元時,利潤為1920.每件商品的利潤率是60%.

【解析】

1)銷售利潤=每件商品的利潤×180-10×上漲的錢數(shù)),根據(jù)每件售價必須低于34元,可得自變量的取值;
2)利用公式法結(jié)合(1)得到的函數(shù)解析式可得二次函數(shù)的最值,結(jié)合實際意義,求得整數(shù)解即可;
3)讓(1)中的y=1920求得合適的x的解即可.

1;

2,,當(dāng)的增大而增大,由,

為整數(shù)可得當(dāng)時,

答:每件商品的售價為33元時,商品的利潤最大為1950元;

3,,

解得,

,,

售價為32元時,利潤為1920.每件商品的利潤率是60%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知∠C=90°,AC=BC=4DAB的中點,點E,F分別在AC,BC上運動,(點E不與點A,C重合),且保持AE=CF,連接DE,EF,再次運動變化過程中,有下列結(jié)論:①四邊形CEDF有可能成為正方形;②△DFE是等腰直角三角形;③四邊形CEDF的面積是定值.其中正確的結(jié)論是:______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的面積為20,頂點Ay軸上,頂點Cx軸上,頂點D在雙曲線的圖象上,邊CDy軸于點E,若,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點的直線與反比例函數(shù)k>0)的圖象交于A,B兩點,點A在第一象限點Cx軸正半軸上,連結(jié)AC交反比例函數(shù)圖象于點D.AE為∠BAC的平分線,過點BAE的垂線,垂足為E,連結(jié)DE.若AC=3DC,△ADE的面積為8,則k的值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線過點

1)求拋物線的解析式及其頂點C的坐標(biāo);

2)設(shè)點Dx軸上一點,當(dāng)時,求點D的坐標(biāo);

3)如圖2.拋物線與y軸交于點E,點P是該拋物線上位于第二象限的點,線段PABE于點M,交y軸于點N,的面積分別為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標(biāo)有數(shù)字12、34,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認(rèn)為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一方有難,八方支援.已知甲、乙兩地急需一批物資,其中甲地需要240噸,乙地需要260噸.AB兩城市通過募捐,很快籌集齊了這種物資,其中A城市籌到物資200噸,B城市籌到物資300噸.已知從AB兩城市將每噸物資分別運往甲、乙兩地所需運費成本(單位:元/噸)如表所示.問:怎樣調(diào)運可使總運費最少?最少運費為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在四邊形ABCD中,AD//BC,∠C=90°動點P從點C出發(fā)沿線段CD向點D運動.到達點D即停止,若E、F分別是AP、BP的中點,設(shè)CP=x,△PEF的面積為y,且yx之間的函數(shù)關(guān)系的圖象如圖乙所示,則線段AB長為( )

A.2B.2C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,AEBC于點E,ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.

(1)求證:CD與⊙O相切;

(2)BF24OE5,求tanABC的值.

查看答案和解析>>

同步練習(xí)冊答案