【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F(xiàn)分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=2,求EF的長.
【答案】(1)詳見解析;(2)EF=
【解析】
(1)由已知條件不難證明△ADC≌△BDG,可得BG=AC,∠CAD=∠GBD,由E,F分別是BG,AC的中點可得ED=BG,DF=AC,進而得出ED=DF=BE=EG=AF=CF,所以△BED≌△AFD,所以∠BDE=∠ADF,所以∠ADF+∠EDA=90°即DE⊥DF;(2)由AC的長度可得出DE、DF的長度,由勾股定理求出EF的長度即可.
(1)∵AD⊥BC,
∴∠ADC=∠BDG=90°,
∵在△ADC與△BDG中,
,
∴△ADC≌△BDG,
∴BG=AC,∠CAD=∠GBD,
∵AD⊥BC,E,F分別是BG,AC的中點,
∴BE=EG,AF=CF,ED=BG,DF=AC,
∴ED=DF=BE=EG=AF=CF,
∵在△BED與△AFD中,
,
∴△BED≌△AFD,
∴∠BDE=∠ADF,
∵∠BDE+∠EDA=90°,
∴∠ADF+∠EDA=90°,
∴DE⊥DF;
(2)連接EF,由(1)得△DEF為等腰直角三角形,
∵AC=2,
∴DE=DF=1,
∴EF==.
科目:初中數(shù)學 來源: 題型:
【題目】小麗購買學習用品的收據(jù)如表,因污損導致部分數(shù)據(jù)無法識別,根據(jù)下表,解決下列問題:
(1)小麗買了自動鉛筆、記號筆各幾支?
(2)若小麗再次購買軟皮筆記本和自動鉛筆兩種文具,共花費15元,則有哪幾種不同的購買方案?
商品名 | 單價(元) | 數(shù)量(個) | 金額(元) |
簽字筆 | 3 | 2 | 6 |
自動鉛筆 | 1.5 | ● | ● |
記號筆 | 4 | ● | ● |
軟皮筆記本 | ● | 2 | 9 |
圓規(guī) | 3.5 | 1 | ● |
合計 | 8 | 28 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖,點M、N把線段AB分割成AM、MN、NB,若以AM、MN、NB為邊的三角形是一個直角三角形,則稱點M、N是線段AB的勾股分割點.
(1)已知M、N把線段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,則點M、N是線段AB的勾股分割點嗎?請說明理由.
(2)已知點M、N是線段AB的勾股分割點,且AM為直角邊,若AB=24,AM=6,求BN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點P為圓上一點,點C為AB延長線上一點,PA=PC,∠C=30°.
(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(操作發(fā)現(xiàn))
(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.
①求∠EAF的度數(shù);
②DE與EF相等嗎?請說明理由;
(類比探究)
(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.
①∠EAF= ;
②當AE=1,ED=2時,求DB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,第一個正方形ABCD的位置如圖所示,點A的坐標為(2,0),點D的坐標為(0,4),延長CB交x軸于點A1,作第二個正方形A1B1C1C;延長C1B1交x軸于點A2,作第三個正方形A2B2C2C1…按這樣的規(guī)律進行下去,第2018個正方形的面積為( 。
A. 20×()2017 B. 20×()2018 C. 20×()4036 D. 20×()4034
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上):
①把△ABC沿BA方向平移,請在網(wǎng)格中畫出當點A移動到點A1時的△A1B1C1;
②把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°后得到△A2B2C2 , 如果網(wǎng)格中小正方形的邊長為1,求點B1旋轉(zhuǎn)到B2的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了貫徹落實健康第一的指導思想,促進學生全面發(fā)展,國家每年都要對中學生進行一次體能測試,測試結(jié)果分“優(yōu)秀”、“良好”、“及格”、“不及格”四個等級,某學校從七年級學生中隨機抽取部分學生的體能測試結(jié)果進行分析,并根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖,請根據(jù)這兩幅統(tǒng)計圖中的信息回答下列問題
(1)本次抽樣調(diào)查共抽取多少名學生?
(2)補全條形統(tǒng)計圖.
(3)在扇形統(tǒng)計圖中,求測試結(jié)果為“良好”等級所對應圓心角的度數(shù).
(4)若該學校七年級共有600名學生,請你估計該學校七年級學生中測試結(jié)果為“不及格”等級的學生有多少名?
(5)請你對“不及格”等級的同學提一個友善的建議(一句話即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com