【題目】如圖,直線(xiàn)AB、CD相交于O,OE⊥CD,且∠BOD的度數(shù)是∠AOD的5倍.
求:(1)∠AOD、∠BOD的度數(shù);(2)∠BOE的度數(shù).
【答案】(1) ∠AOD=30,∠BOD=150;(2) ∠BOE=60.
【解析】
(1)設(shè)∠AOD=x,則∠BOD=5x,列得x+5x=180,解出x即可得到答案;
(2)根據(jù)OE⊥CD,求出∠DOE=90,再用∠BOD-∠DOE即可得到∠BOE的度數(shù).
(1)設(shè)∠AOD=x,則∠BOD=5x,
∵∠AOD+∠BOD=180,
∴x+5x=180,
x=30,
∴∠AOD=30,∠BOD=5x=150;
(2)∵OE⊥CD,
∴∠DOE=90,
∴∠BOE=∠BOD-∠DOE=150-90=60.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:O是直線(xiàn)AB上一點(diǎn),∠AOC=50°,OD是∠BOC的角平分線(xiàn),OE⊥OC于點(diǎn)O.求∠DOE的度數(shù).(請(qǐng)補(bǔ)全下面的解題過(guò)程)
解:∵O是直線(xiàn)AB上一點(diǎn),∠AOC=50°,
∴∠BOC=180°-∠AOC= °.
∵ OD是∠BOC的角平分線(xiàn),
∴∠COD= ∠BOC .( )
∴∠COD=65°.
∵OE⊥OC于點(diǎn)O,(已知).
∴∠COE= °.( )
∴∠DOE=∠COE-∠COD= ° .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六邊形ABCDEF的六個(gè)內(nèi)角都相等,若AB=1,BC=CD=3,DE=2,則這個(gè)六邊形的周長(zhǎng)等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖所示,在四邊形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:點(diǎn)C在線(xiàn)段AB上,若BC=AC,則稱(chēng)點(diǎn)C是線(xiàn)段AB的一個(gè)圓周率點(diǎn).
如圖,已知點(diǎn)C是線(xiàn)段AB的一個(gè)靠近點(diǎn)A的圓周率點(diǎn),AC=3.
(1)AB= ;(結(jié)果用含的代數(shù)式表示)
(2)若點(diǎn)D是線(xiàn)段AB的另一個(gè)圓周率點(diǎn)(不同于點(diǎn)C),則CD= ;
(3)若點(diǎn)E在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,且點(diǎn)B是線(xiàn)段CE的一個(gè)圓周率點(diǎn).求出BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市公交快速通道開(kāi)通后,為響應(yīng)市政府“綠色出行”的號(hào)召,家住新城的小王上班由自駕車(chē)改為乘坐公交車(chē).已知小王家距上班地點(diǎn)18千米,他用乘公交車(chē)的方式平均每小時(shí)行駛的路程比他用自駕車(chē)的方式平均每小時(shí)行駛的路程的2倍還多9千米,他從家出發(fā)到達(dá)上班地點(diǎn),乘公交車(chē)方式所用時(shí)間是自駕車(chē)方式所用時(shí)間的.小王用自駕車(chē)方式上班平均每小時(shí)行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P、Q 是反比例函數(shù)(x>0)圖象上的兩點(diǎn),過(guò)點(diǎn) P、Q 分別作直線(xiàn)且與 x、y 軸分別交于點(diǎn) A、B和點(diǎn) M、N.已知點(diǎn) P 為線(xiàn)段 AB 的中點(diǎn).
(1)求△AOB 的面積(結(jié)果用含 a 的代數(shù)式表示);
(2)當(dāng)點(diǎn) Q 為線(xiàn)段 MN 的中點(diǎn)時(shí),小菲同學(xué)連結(jié) AN,MB 后發(fā)現(xiàn)此時(shí)直線(xiàn) AN 與直線(xiàn)MB 平行,問(wèn)小菲同學(xué)發(fā)現(xiàn)的結(jié)論正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑假到了,即將迎來(lái)手機(jī)市場(chǎng)的銷(xiāo)售旺季.某商場(chǎng)銷(xiāo)售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃投入15.5萬(wàn)元資金,全部用于購(gòu)進(jìn)兩種手機(jī)若干部,期望全部銷(xiāo)售后可獲毛利潤(rùn)不低于2萬(wàn)元.(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷(xiāo)售量)
(1)若商場(chǎng)要想盡可能多的購(gòu)進(jìn)甲種手機(jī),應(yīng)該安排怎樣的進(jìn)貨方案購(gòu)進(jìn)甲乙兩種手機(jī)?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在甲種手機(jī)購(gòu)進(jìn)最多的方案上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷(xiāo)售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(0,n),以點(diǎn)B為直角頂點(diǎn),點(diǎn)C在第二象限內(nèi),作等腰直角△ABC.
(1)點(diǎn)C的坐標(biāo)為 (用字母n表示)
(2)如果△ABC的面積為5.5,求n的值;
(3)在(2)的條件下,坐標(biāo)平面內(nèi)是否存在一點(diǎn)M,使以點(diǎn)M、A、B為頂點(diǎn)組成的三角形與△ABC全等?如果存在畫(huà)出符合要求的圖形,求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com