【題目】暑假到了,即將迎來手機市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:
甲 | 乙 | |
進價(元/部) | 4000 | 2500 |
售價(元/部) | 4300 | 3000 |
該商場計劃投入15.5萬元資金,全部用于購進兩種手機若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價﹣進價)×銷售量)
(1)若商場要想盡可能多的購進甲種手機,應該安排怎樣的進貨方案購進甲乙兩種手機?
(2)通過市場調(diào)研,該商場決定在甲種手機購進最多的方案上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
【答案】(1)要想盡可能多的購進甲種手機,應該安排怎樣的進貨方案是:甲種手機購20部,乙種手機購30部;(2)甲種手機減少5部,毛利潤最大為為24500元.
【解析】分析:(1)設甲種手機購進x部,則乙種手機購進 部,根據(jù)總利潤不低于2萬元建立不等式求出其解即可;
(2)設甲種手機減少m部,毛利潤為y元,先求出m的取值范圍,根據(jù)利潤=售價-進價建立函數(shù)解析式即可.
詳解:(1)設甲種手機購進x部,由題意,得
解得:
∵兩種手機數(shù)量都為整數(shù),
∴x的最大值為20.
∴乙種手機應該購進(1550004000×20)÷2500=30部,
∴要想盡可能多的購進甲種手機,應該安排怎樣的進貨方案是:甲種手機購20部,乙種手機購30部。
(2)設甲種手機減少m部,毛利潤為y元,由題意,得
解得:
y=300(20m)+500(30+2m),
y=700m+21000.
∴k=700>0,
∴y隨m的增大而增大,
∴m=5時,最大利潤為24500元.
科目:初中數(shù)學 來源: 題型:
【題目】國民體質(zhì)監(jiān)測中心等機構(gòu)開展了青少年形體測評.專家組隨機抽查了某市若干名初中學生坐姿、站姿、走姿的好壞情況.我們對專家的測評數(shù)據(jù)作了適當處理(如果一個學生有一種以上不良姿勢,我們以他最突出的一種作記載),并將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中所給信息解答下列問題:
【1】請將兩幅統(tǒng)計圖補充完整;
【2】在這次形體測評中,一共抽查了 名學生,如果全市有10萬名初中生,那么全市初中生中,三姿良好的學生約有 人;
【3】根據(jù)統(tǒng)計結(jié)果,請你簡單談談自己的看法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于O,OE⊥CD,且∠BOD的度數(shù)是∠AOD的5倍.
求:(1)∠AOD、∠BOD的度數(shù);(2)∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像分別與x軸、y軸交于點A、B,以線段AB為腰在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.
(1)直接寫出A、B兩點的坐標,并求線段AB的長;
(2)求過B、C兩點的直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E為AB邊上一點,將△AED沿直線DE翻折,點A落在點P處,且DP⊥BC,垂足為F.
(1)求∠EDP的度數(shù).
(2)過D點作DG⊥DC交AB于G點,且AG=FC,
求證:四邊形ABCD為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個電子跳蚤從數(shù)軸的原點出發(fā),連續(xù)不斷地一左一右來回跳動(第一次向左跳),跳動的距離依次為,,,…
(1)如果是正整數(shù),那么第次跳動的距離是______;
(2)第次跳動的落點位置所對應的有理數(shù)是______;
(3)第次跳動后所處位置在原點的______側(cè);
(4)①相對于出發(fā)點,電子跳蚤第一次跳記作(向左跳),第二次跳記作(向右跳),以此類推,如果是正整數(shù),那么第次記作______;
②會不會有相鄰兩次跳動的落點位置在原點的同側(cè)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點O為直線AB上一點,將直角三角板MON的直角頂點放在點O處,并在∠MON內(nèi)部作射線OC.
(1)將三角板放置到如圖所示位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度數(shù);
(2)若仍將三角板按照如圖所示的方式放置,僅滿足OC平分∠MOB,試猜想∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com