【題目】如圖,直線(xiàn)y=x+3交x軸于A(yíng)點(diǎn),將一塊等腰直角三角形紙板的直角頂點(diǎn)置于原點(diǎn)O,另兩個(gè)頂點(diǎn)M、N恰落在直線(xiàn)y=x+3上,若N點(diǎn)在第二象限內(nèi),則tan∠AON的值為( 。
A. B. C. D.
【答案】A
【解析】
過(guò)O作OC⊥AB于C,過(guò)N作ND⊥OA于D,設(shè)N的坐標(biāo)是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐標(biāo),得出ND、OD,代入tan∠AON=求出即可.
過(guò)O作OC⊥AB于C,過(guò)N作ND⊥OA于D,
∵N在直線(xiàn)y=x+3上,
∴設(shè)N的坐標(biāo)是(x,x+3),
則DN=x+3,OD=-x,
y=x+3,
當(dāng)x=0時(shí),y=3,
當(dāng)y=0時(shí),x=-4,
∴A(-4,0),B(0,3),
即OA=4,OB=3,
在△AOB中,由勾股定理得:AB=5,
∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,
∴3×4=5OC,
OC=,
∵在Rt△NOM中,OM=ON,∠MON=90°,
∴∠MNO=45°,
∴sin45°=,
∴ON=,
在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
即(x+3)2+(-x)2=()2,
解得:x1=-,x2=,
∵N在第二象限,
∴x只能是-,
x+3=,
即ND=,OD=,
tan∠AON=.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:四邊形ABCD中,對(duì)角線(xiàn)BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)與軸相交于、兩點(diǎn)(其中為坐標(biāo)原點(diǎn)),過(guò)點(diǎn)作直線(xiàn)軸于點(diǎn),交拋物線(xiàn)于點(diǎn),點(diǎn)關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為(其中、不重合),連接交軸于點(diǎn),連接和.
(1)時(shí),求拋物線(xiàn)的解析式和的長(zhǎng);
如圖時(shí),若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】冬至是一年中太陽(yáng)光照射最少的日子,如果此時(shí)樓房最低層能采到陽(yáng)光,一年四季整座樓均能受到陽(yáng)光照射,所以冬至是選房買(mǎi)房時(shí)確定陽(yáng)光照射的最好時(shí)機(jī).吳江某居民小區(qū)有一朝向?yàn)檎戏较虻木用駱牵摼用駱堑囊粯鞘歉邽?/span>米的小區(qū)超市,超市以上是居民住房,現(xiàn)計(jì)劃在該樓前面米處蓋一棟新樓,已知吳江地區(qū)冬至正午的陽(yáng)光與水平線(xiàn)夾角大約為.(參考數(shù)據(jù)在,)
中午時(shí),若要使得超市采光不受影響,則新樓的高度不能超過(guò)多少米?(結(jié)果保留整數(shù))
若新建的大樓高米,則中午時(shí),超市以上的居民住房采光是否受影響,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線(xiàn)段AB 是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)M是弧CBD 上任意一點(diǎn),AH=2,CH=4.
(1)求⊙O 的半徑r 的長(zhǎng)度;
(2)求sin∠CMD;
(3)直線(xiàn)BM交直線(xiàn)CD于點(diǎn)E,直線(xiàn)MH交⊙O 于點(diǎn) N,連接BN交CE于點(diǎn) F,求HEHF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圖1和圖2中的四邊形ABCD都是正方形,△ABE的邊長(zhǎng)分別為a,b,c,請(qǐng)你從圖1到圖2,圖2到圖3的變換過(guò)程中,利用幾何圖形的面積關(guān)系,求a,b,c之間的等量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,在△ABC外側(cè)作直線(xiàn)CP,點(diǎn)A關(guān)于直線(xiàn)CP的對(duì)稱(chēng)點(diǎn)為D,連接AD,BD,其中BD交直線(xiàn)CP于點(diǎn)E.
(1)如圖1,∠ACP=15°.
①依題意補(bǔ)全圖形;
②求∠CBD的度數(shù);
(2)如圖2,若45°<∠ACP<90°,直接用等式表示線(xiàn)段AC,DE,BE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藥廠(chǎng)銷(xiāo)售部門(mén)根據(jù)市場(chǎng)調(diào)研結(jié)果,對(duì)該廠(chǎng)生產(chǎn)的一種新型原料藥未來(lái)兩年的銷(xiāo)售進(jìn)行預(yù)測(cè),井建立如下模型:設(shè)第t個(gè)月該原料藥的月銷(xiāo)售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線(xiàn)段AB的組合;設(shè)第t個(gè)月銷(xiāo)售該原料藥每噸的毛利潤(rùn)為Q(單位:萬(wàn)元),Q與t之間滿(mǎn)足如下關(guān)系:Q=
(1)當(dāng)8<t≤24時(shí),求P關(guān)于t的函數(shù)解析式;
(2)設(shè)第t個(gè)月銷(xiāo)售該原料藥的月毛利潤(rùn)為w(單位:萬(wàn)元)
①求w關(guān)于t的函數(shù)解析式;
②該藥廠(chǎng)銷(xiāo)售部門(mén)分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷(xiāo)售的月毛利潤(rùn)范圍,求此范圍所對(duì)應(yīng)的月銷(xiāo)售量P的最小值和最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com