【題目】△ABC與△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.現(xiàn)將△DEF與△ABC按如圖所示的方式疊放在一起,使△ABC保持不動(dòng),△DEF運(yùn)動(dòng),且滿足點(diǎn)E在邊BC上運(yùn)動(dòng)(不與B,C重合),邊DE始終經(jīng)過點(diǎn)A,EF與AC交于點(diǎn)M.在△DEF運(yùn)動(dòng)過程中,若△AEM能構(gòu)成等腰三角形,則BE的長(zhǎng)為______.
【答案】2﹣或
【解析】
分若AE=AM 則∠AME=∠AEM=45°;若AE=EM;若MA=ME 則∠MAE=∠AEM=45°三種情況討論解答即可;
解:①若AE=AM 則∠AME=∠AEM=45°
∵∠C=45°
∴∠AME=∠C
又∵∠AME>∠C
∴這種情況不成立;
②若AE=EM
∵∠B=∠AEM=45°
∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°
∴∠BAE=∠MEC
在△ABE和△ECM中,
,
∴△ABE≌△ECM(AAS),
∴CE=AB=,
∵AC=BC=AB=2,
∴BE=2﹣;
③若MA=ME 則∠MAE=∠AEM=45°
∵∠BAC=90°,
∴∠BAE=45°
∴AE平分∠BAC
∵AB=AC,
∴BE=BC=.
故答案為2﹣或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推廣陽光體育“大課間”活動(dòng),我市某中學(xué)決定在學(xué)生中開設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
把代數(shù)式通過配湊等手段得到局部完全平方式,再進(jìn)行有關(guān)計(jì)算和解題,這種解題方法叫做配方法.
如(1)用配方法分解因式:.
解:原式=
=
(2)M=,利用配方法求M的最小值.
解:M=
=
M有最小值1.
請(qǐng)根據(jù)上述材料,解決下列問題:
(1)在橫線上添加一個(gè)常數(shù),使之成為完全平方式:
(2)用配方法分解因式:
(3)若M=,求M的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片中,是邊上一點(diǎn)所疊紙片使點(diǎn)與點(diǎn)重合,其中為折痕,連結(jié).
(1)求證:四邊形是菱形;
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(,y1),B(2,y2)為反比例函數(shù)y=圖象上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)在x軸正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB邊上一點(diǎn),以BD為直徑的⊙O與邊AC相切于點(diǎn)E,連結(jié)DE并延長(zhǎng),與BC的延長(zhǎng)線交于點(diǎn)F.
(1)求證:BD=BF;
(2)若BC=6,AD=4,求sinA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,AD=CD,點(diǎn)E在AD上,DE=BD,M、N分別是AB、CE的中點(diǎn).
(1)求證:△ADB≌△CDE;
(2)求∠MDN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( 。
A. 打開電視機(jī),正在播廣告,是必然事件
B. 在連續(xù)5次的數(shù)學(xué)測(cè)試中,兩名同學(xué)的平均分相同,方差較大的同學(xué)數(shù)學(xué)成績(jī)更穩(wěn)定
C. 某同學(xué)連續(xù)10次拋擲質(zhì)量均勻的硬幣,3次正面向上,因此正面向上的概率是30%
D. 從一個(gè)只裝有白球的缸里摸出一個(gè)球,摸出的球是白球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)O為直線AB上一點(diǎn),∠COD=90°,射線OE平分∠AOD.
(1)如圖①所示,若∠COE=20°,則∠BOD= °.
(2)若將∠COD繞點(diǎn)O旋轉(zhuǎn)至圖②的位置,試判斷∠BOD和∠COE的數(shù)量關(guān)系,并說明理由;
(3)若將∠COD繞點(diǎn)O旋轉(zhuǎn)至圖③的位置,∠BOD和∠COE的數(shù)量關(guān)系是否發(fā)生變化?并請(qǐng)說明理由.
(4)若將∠COD繞點(diǎn)O旋轉(zhuǎn)至圖④的位置,繼續(xù)探究∠BOD和∠COE的數(shù)量關(guān)系,請(qǐng)直接寫出∠BOD和∠COE之間的數(shù)量關(guān)系: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com