【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°AB=4,D是線段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑畫⊙O分別交AB,ACEF,連接EF,則線段EF長度的最小值為( )

A.B.C.D.

【答案】D

【解析】

連接OE、OF,作OHEF于點(diǎn)H,由垂徑定理可知EH=HF,OH平分∠EOF,再由同弧所對(duì)的圓周角是圓心角的一半,可知∠EOH=60°,在RtOEH中,,由此可知當(dāng)直徑AD最小時(shí),EF最小,當(dāng)ADBC時(shí),AD最短,由此可求EF的最小值.

如圖所示,連接OE、OF,作OHEF于點(diǎn)H,由垂徑定理可知EH=HF,OH平分∠EOF,

由圓周角定理可得,

RtOEH中,,

,

當(dāng)OE最小即直徑AD最短時(shí),EF取得最小值,

由垂線段最短可知AD⊥于BC時(shí),AD最短,

RtABD中,,則

此時(shí)

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圖中的小方格都是邊長為1的正方形,△ABC△A'B'C'是以點(diǎn)O為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.

1)畫出位似中心點(diǎn)O;

2)直接寫出△ABC△A′B′C′的位似比_______

3)以位似中心O為坐標(biāo)原點(diǎn),以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,畫出△A′B′C′關(guān)于點(diǎn)O中心對(duì)稱的△A″B″C″,并直接寫出△A″B″C″各頂點(diǎn)的坐標(biāo).______________;_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解全校名學(xué)生雙休日在家最愛選擇的電視頻道情況,問卷要求每名學(xué)生從“新聞,體育,電影,科教,其他”五項(xiàng)中選擇其一,隨機(jī)抽取了部分學(xué)生,調(diào)查結(jié)果繪制成未完成的統(tǒng)計(jì)圖表如下:

頻道

新聞

體育

電影

科教

其他

人數(shù)

求調(diào)查的學(xué)生人數(shù)及統(tǒng)計(jì)圖表中的值;

求選擇其他頻道在統(tǒng)計(jì)圖中對(duì)應(yīng)扇形的圓心角的度數(shù);

求全校最愛選擇電影頻道的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB10cm,弦BC5cmD、E分別是∠ACB的平分線與⊙O,AB的交點(diǎn),PAB延長線上一點(diǎn),且PC=PE

1)求ACAD的長;

2)試判斷直線PC⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,弦CDAB于點(diǎn)E,點(diǎn)M在O上,M=D

1判斷BC、MD的位置關(guān)系,并說明理由;

2若AE=16,BE=4,求線段CD的長;

3若MD恰好經(jīng)過圓心O,求D的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的四個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,4),B(-2,-2),C(4-2),D(4,4).

(1)填空:正方形的面積為_______;當(dāng)雙曲線(k≠0)與正方形ABCD有四個(gè)交點(diǎn)時(shí),k的取值范圍是_______.

(2)已知拋物線L(a>0)頂點(diǎn)P在邊BC上,與邊AB,DC分別相交于點(diǎn)E,F,過點(diǎn)B的雙曲線(k≠0)與邊DC交于點(diǎn)N.

①點(diǎn)Q(m,-m2-2m+3)是平面內(nèi)一動(dòng)點(diǎn),在拋物線L的運(yùn)動(dòng)過程中,點(diǎn)Qm運(yùn)動(dòng),分別求運(yùn)動(dòng)過程中點(diǎn)Q在最高位置和最低位置時(shí)的坐標(biāo).

②當(dāng)點(diǎn)F在點(diǎn)N下方,AE=NF,點(diǎn)P不與B,C兩點(diǎn)重合時(shí),求的值.

③求證:拋物線L與直線的交點(diǎn)M始終位于軸下方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為5,點(diǎn)AB、C都在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D

1)如圖1,若BC為⊙O的直徑,AB6,求ACBD的長;

2)如圖2,若∠CAB60°,過圓心OOEBD于點(diǎn)E,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,動(dòng)點(diǎn)點(diǎn)出發(fā),以2cm/s的速度沿向終點(diǎn)勻速運(yùn)動(dòng),連接,以為直徑作⊙分別交于點(diǎn),連接.設(shè)運(yùn)動(dòng)時(shí)間為s .

(1)如圖①,若點(diǎn)的中點(diǎn),求證:;

(2)如圖②,若⊙相切于點(diǎn),求的值;

(3)是以為腰的等腰三角形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ymxm為常數(shù))與雙曲線yk為常數(shù))相交于A、B兩點(diǎn).

1)若點(diǎn)A的橫坐標(biāo)為3,點(diǎn)B的縱坐標(biāo)為﹣4.直接寫出:k   m   ,mx的解集為   

2)若雙曲線yk為常數(shù))的圖象上有點(diǎn)Cx1,y1),Dx2,y2),當(dāng)x1x2時(shí),比較y1y2的大小.

查看答案和解析>>

同步練習(xí)冊答案