【題目】A城有某種農(nóng)機(jī)30,B城有該農(nóng)機(jī)40,現(xiàn)要將這些農(nóng)機(jī)全部運(yùn)往C,D兩鄉(xiāng),調(diào)運(yùn)任務(wù)承包給某運(yùn)輸公司.已知C鄉(xiāng)需要農(nóng)機(jī)34,D鄉(xiāng)需要農(nóng)機(jī)36,A城往C,D兩鄉(xiāng)運(yùn)送農(nóng)機(jī)的費(fèi)用分別為250/臺和200/,B城往C,D兩鄉(xiāng)運(yùn)送農(nóng)機(jī)的費(fèi)用分別為150/臺和240/.

(1)設(shè)A城運(yùn)往C鄉(xiāng)該農(nóng)機(jī)x,運(yùn)送全部農(nóng)機(jī)的總費(fèi)用為W,W關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(2)現(xiàn)該運(yùn)輸公司要求運(yùn)送全部農(nóng)機(jī)的總費(fèi)用不低于16460,則有多少種不同的調(diào)運(yùn)方案?將這些方案設(shè)計(jì)出來.

(3)現(xiàn)該運(yùn)輸公司決定對A城運(yùn)往C鄉(xiāng)的農(nóng)機(jī),從運(yùn)輸費(fèi)中每臺減免a(a≤200)作為優(yōu)惠,其他費(fèi)用不變,如何調(diào)運(yùn),使總費(fèi)用最少?

【答案】(1)W=140x+12540(0<x≤30);(2)有3種不同的調(diào)運(yùn)方案,具體見解析;(3)從A城調(diào)往C30臺,調(diào)往D0臺,從,B城調(diào)往C4臺,調(diào)往D36臺.

【解析】

1)A城運(yùn)往C鄉(xiāng)的化肥為x噸,則可得A城運(yùn)往D鄉(xiāng)的化肥為30-x噸,B城運(yùn)往C鄉(xiāng)的化肥為34-x噸,B城運(yùn)往D鄉(xiāng)的化肥為40-(34-x)噸,從而可得出Wx大的函數(shù)關(guān)系.

(2)根據(jù)題意得140x+12540≥16460求得28≤x≤30,于是得到有3種不同的調(diào)運(yùn)方案,寫出方案即可;

(3)根據(jù)題意得到W=(140-a)x+12540,所以當(dāng)a=200時(shí),y=-60x+12540,此時(shí)x=30時(shí),=10740元.于是得到結(jié)論.

本題解析:

(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);

(2)根據(jù)題意得140x+12540≥16460,x≥28,

x≤30,28≤x≤30,∴有3種不同的調(diào)運(yùn)方案,

第一種調(diào)運(yùn)方案:從A城調(diào)往C28臺,調(diào)往D2臺,從,B城調(diào)往C6臺,調(diào)往D34臺;

第二種調(diào)運(yùn)方案:從A城調(diào)往C29臺,調(diào)往D1臺,從,B城調(diào)往C5臺,調(diào)往D35臺;

第三種調(diào)運(yùn)方案:從A城調(diào)往C30臺,調(diào)往D0臺,從,B城調(diào)往C4臺,調(diào)往D36臺,

(3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540,

所以當(dāng)a=200時(shí),y最小=﹣60x+12540,此時(shí)x=30時(shí)y最小=10740元.

此時(shí)的方案為:從A城調(diào)往C城30臺,調(diào)往D城0臺,從,B城調(diào)往C城4臺,調(diào)往D城36臺.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C>B.如圖①,ADBC于點(diǎn)DAE平分∠BAC

1)如圖①,ADBC于點(diǎn)D,AE平分∠BAC,能猜想出∠DAE與∠B、∠C之間的關(guān)系是什么?并說明理由.

2)如圖②,AE平分∠BAC,FAE上的一點(diǎn),且FDBC于點(diǎn)D,這時(shí)∠EFD與∠B、∠C有何數(shù)量關(guān)系?請說明理由.

3)如圖③,AE平分∠BACFAE延長線上的一點(diǎn),FDBC于點(diǎn)D,請你寫出這時(shí)∠EFD與∠B、∠C之間的數(shù)量關(guān)系(只寫結(jié)論,不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分線分別交AB,AC于點(diǎn)D和點(diǎn)E.CE=2,則AB的長是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OFOD分別是∠AOE,∠BOE的平分線.

(1)寫出∠DOE的補(bǔ)角;

(2)若∠BOE62°,求∠AOD和∠EOF的度數(shù);

(3)試問射線ODOF之間有什么特殊的位置關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE是△ACD的角平分線,B在DA延長線上,AE∥BC,F(xiàn)為BC中點(diǎn),判斷AE與AF的位置關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)老師在課上給出了這樣一道題目:如圖(1),等邊△ABC邊長為2,過AB邊上一點(diǎn)P作PE⊥AC于E,Q為BC延長線上一點(diǎn),且AP=CQ,連接PQ交AC于D,求DE的長.

小明同學(xué)經(jīng)過認(rèn)真思考后認(rèn)為,可以通過過點(diǎn)P作平行線構(gòu)造等邊三角形的方法來解決這個(gè)問題.請根據(jù)小明同學(xué)的思路直接寫出DE的長.

(2)(類比探究)

老師引導(dǎo)同學(xué)繼續(xù)研究:

①等邊△ABC邊長為2,當(dāng)P為BA的延長線上一點(diǎn)時(shí),作PE⊥CA的延長線于點(diǎn)E ,Q為邊BC上一點(diǎn),且AP=CQ,連接PQ交AC于D.請你在圖(2)中補(bǔ)全圖形并求DE的長.

②已知等邊△ABC,當(dāng)P為AB的延長線上一點(diǎn)時(shí),作PE⊥射線AC于點(diǎn)E, Q為哪一個(gè)(①BC邊上;②BC的延長線上;③CB的延長線上)一點(diǎn),且AP=CQ,連接PQ交直線AC于點(diǎn)D,能使得DE的長度保持不變.( 直接寫出答案的編號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊(duì)成績的中位數(shù)是 分,乙隊(duì)成績的眾數(shù)是 分;

(2)計(jì)算乙隊(duì)的平均成績和方差;

(3)已知甲隊(duì)成績的方差是1.4,則成績較為整齊的是 隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3)

(1)求該二次函數(shù)的解析式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)A的一個(gè)動點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH,則在點(diǎn)E的運(yùn)動過程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長;
(3)設(shè)P點(diǎn)是x軸下方的拋物線上的一個(gè)動點(diǎn),連接PA、PC,求△PAC面積的取值范圍,若△PAC面積為整數(shù)時(shí),這樣的△PAC有幾個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班將舉行知識競賽活動,班長安排小明購買獎(jiǎng)品.小明去文化用品店買了兩種大小不同的筆記本一共a本,其中大筆記本單價(jià)8元,小筆記本單價(jià)5元.若設(shè)買單價(jià)5元小筆記本買了x本.

1)填寫下表:

單價(jià)(元/本)

數(shù)量(本)

金額(元)

小筆記本

5

x

5x

大筆記本

8

2)列式表示:小明買大小筆記本共花 元.

3)若小明從班長那里拿了300元,買了40本大小不同的兩種筆記本(a40),還找回55元給班長,那么小明買了大小筆記本各多少本?

4)若這個(gè)班下次活動中,讓小明剛好花400元購買這兩種大小筆記本,并且購買的小筆記本數(shù)量x要小于60本,但還要超過30(30x60),請列舉小明有可能購買的方案,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案