2.用漫灌方式給綠地澆水,a天用水10t,改用噴灌方式后,10t水可以比原來(lái)多用5天.噴灌比漫灌平均每天節(jié)約用水多少?

分析 漫灌時(shí)平均每天的用水量為$\frac{10}{a}$t,噴灌平均每天用水量為$\frac{10}{a+5}$t,然后求它們的差即可.

解答 解:噴灌比漫灌平均每天節(jié)約的水量為$\frac{10}{a}$-$\frac{10}{a+5}$=$\frac{50}{{a}^{2}+5a}$(t).

點(diǎn)評(píng) 本題考查了列代數(shù)式(分式):把問題中與數(shù)量有關(guān)的詞語(yǔ),用含有數(shù)字、字母和運(yùn)算符號(hào)的式子表示出來(lái),就是列代數(shù)式. 列代數(shù)式五點(diǎn)注意:①仔細(xì)辨別詞義. ②分清數(shù)量關(guān)系. ③注意運(yùn)算順序.④規(guī)范書寫格式.⑤正確進(jìn)行代換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一個(gè)多邊形從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線將它分成6個(gè)三角形,則這個(gè)多邊形的邊數(shù)是8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,二次函數(shù)y=x2+2x+c的圖象與x軸交于點(diǎn)A和點(diǎn)B(1,0),以AB為邊在x軸上方作正方形ABCD,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的正方向勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿CB勻速運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)終點(diǎn)B時(shí),點(diǎn)P停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接DP,過點(diǎn)P作DP的垂線與y軸交于點(diǎn)E.
(1)求二次函數(shù)的解析式及點(diǎn)A的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段AO(點(diǎn)P不與A、O重合)上運(yùn)動(dòng)至何處時(shí),線段OE的長(zhǎng)有最大值,并求出這個(gè)最大值;
(3)在P,Q運(yùn)動(dòng)過程中,求當(dāng)△DPE與以D,C,Q為頂點(diǎn)的三角形相似時(shí)t的值;
(4)是否存在t,使△DCQ沿DQ翻折得到△DC′Q,點(diǎn)C′恰好落在拋物線的對(duì)稱軸上?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若$\frac{3}{1-x}+\frac{2}{x+1}=\frac{a}{{x}^{2}-1}$有增根,且a為任意實(shí)數(shù),則這個(gè)方程的增根是x=±1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.拋物線y=ax2經(jīng)過向右平移3個(gè)單位后經(jīng)過(1,1)
(1)求平移所得的拋物線的解析式;
(2)求拋物線再向左平移2個(gè)單位時(shí)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.?dāng)?shù)軸上距離表示數(shù)-1的點(diǎn)$\sqrt{3}$個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是$-1-\sqrt{3}$或$-1+\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,A(1,0),B(3,0),C(0,3),D(2,-1),
(1)試在y軸上找一點(diǎn)P,使三角形ADP的面積與三角形ABC的面積相等.
(2)如果第二象限內(nèi)有一點(diǎn)Q(a,1),使S△QAC=S△ABC,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知$\sqrt{19}$-2的整數(shù)部分是a,小數(shù)部分是b,求$\frac{3}{(b+4)^{2}}$+2a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,A、P、B、C是⊙O上的四個(gè)點(diǎn),∠APC=∠CPB=60°.
(1)△ABC的形狀是等邊三角形;(直接填空,不必說(shuō)理)
(2)延長(zhǎng)BP到D點(diǎn),使得BD=CP,連接AD,試判斷△ADP的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案