【題目】如圖,一艘游輪在A處測(cè)得北偏東45°的方向上有一燈塔B.游輪以20海里/時(shí)的速度向正東方向航行2小時(shí)到達(dá)C處,此時(shí)測(cè)得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結(jié)果精確到1海里,參考數(shù)據(jù):≈1.41,≈1.73)
【答案】A處與燈塔B相距109海里.
【解析】直接過點(diǎn)C作CM⊥AB求出AM,CM的長,再利用銳角三角函數(shù)關(guān)系得出BM的長即可得出答案.
過點(diǎn)C作CM⊥AB,垂足為M,
在Rt△ACM中,∠MAC=90°﹣45°=45°,則∠MCA=45°,
∴AM=MC,
由勾股定理得:AM2+MC2=AC2=(20×2)2,
解得:AM=CM=40,
∵∠ECB=15°,
∴∠BCF=90°﹣15°=75°,
∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,
在Rt△BCM中,tanB=tan30°=,即,
∴BM=40,
∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),
答:A處與燈塔B相距109海里.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,點(diǎn)D在線段AB上,從點(diǎn)B出發(fā),以2cm/s的速度向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒。
(1)點(diǎn)D在運(yùn)動(dòng)t秒后,BD= cm(用含有t的式子表示)
(2)AB=cm,AB邊上的高為cm;
(3)點(diǎn)D在運(yùn)動(dòng)過程中,當(dāng)△BCD為等腰三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知變量x、y對(duì)應(yīng)關(guān)系如下表已知值呈現(xiàn)的對(duì)應(yīng)規(guī)律.
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 1 | 2 | 3 | 4 | … |
y | … | 1 | 2 | ﹣2 | ﹣1 | ﹣ | ﹣ | … |
(1)依據(jù)表中給出的對(duì)應(yīng)關(guān)系寫出函數(shù)解析式,并在給出的坐標(biāo)系中畫出大致圖象;
(2)在這個(gè)函數(shù)圖象上有一點(diǎn)P(x,y)(x<0),過點(diǎn)P分別作x軸和y軸的垂線,并延長與直線y=x﹣2交于A、B兩點(diǎn),若△PAB的面積等于,求出P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知l1∥l2,點(diǎn)A,B在l1上,點(diǎn)C,D在l2上,連接AD,BC.AE,CE分別是∠BAD,∠BCD的角平分線,∠α=70°,∠β=30°.
(1)如圖①,求∠AEC的度數(shù);
(2)如圖②,將線段AD沿CD方向平移,其他條件不變,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AC上一點(diǎn),OB是一條射線,OD平分∠AOB,OE在∠BOC內(nèi),且∠DOE=60°,∠BOE=∠EOC,則下列四個(gè)結(jié)論正確的有__________
①∠BOD=30°;②射線OE平分∠AOC;③圖中與∠BOE互余的角有2個(gè);④圖中互補(bǔ)的角有6對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,過AB的中點(diǎn)E作EC⊥OA,垂足為C,過點(diǎn)B作直線BD交CE的延長線于點(diǎn)D,使得DB=DE.
(1)求證:BD是⊙O的切線;
(2)若AB=12,DB=5,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,0),點(diǎn) B是 y軸正半軸上一動(dòng)點(diǎn),點(diǎn)C、D在 x正半軸上.
(1)如圖,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的兩條角平分線,且BD、CE交于點(diǎn)F,直接寫出CF的長_____.
(2)如圖,△ABD是等邊三角形,以線段BC為邊在第一象限內(nèi)作等邊△BCQ,連接 QD并延長,交 y軸于點(diǎn) P,當(dāng)點(diǎn) C運(yùn)動(dòng)到什么位置時(shí),滿足 PD=DC?請(qǐng)求出點(diǎn)C的坐標(biāo);
(3)如圖,以AB為邊在AB的下方作等邊△ABP,點(diǎn)B在 y軸上運(yùn)動(dòng)時(shí),求OP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于、的方程組以下結(jié)論:①當(dāng)時(shí),方程組的解也是方程的解;②存在實(shí)數(shù),使得;③當(dāng)時(shí),;④不論取什么實(shí)數(shù),的值始終不變,其中正確的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com