如圖,在平面直角坐標系中,已知拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),拋物線對稱軸軸相交于點M.

(1)求拋物線的解析式和對稱軸;    

(2)設點P為拋物線()上的一點,若以A、O、M、P為頂點的四邊形四條邊的長度為四個連續(xù)的正整數(shù),請你直接寫出點P的坐標;         

(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點N,使△NAC的面積最大?若存在,請你求出點N的坐標;若不存在,請你說明理由.       

解:(1)根據(jù)已知條件可設拋物線的解析式為,

          把點A(0,4)代入上式得:

         ∴,

         ∴拋物線的對稱軸是:

(2)由已知,可求得P(6,4).

提示:由題意可知以A、O、M、P為頂點的四邊形有兩條邊AO=4、OM=3,又知點P的坐標中,所以,MP>2,AP>2;因此以1、2、3、4為邊或以2、3、4、5為邊都不符合題意,所以四條邊的長只能是3、4、5、6的一種情況,在Rt△AOM中,,因為拋物線對稱軸過點M,所以在拋物線的圖象上有關于點A的對稱點與M的距離為5,即PM=5,此時點P橫坐標為6,即AP=6;故以A、O、M、P為頂點的四邊形的四條邊長度分別是四個連續(xù)的正整數(shù)3、4、5、6成立,

即P(6,4).

(注:如果考生直接寫出答案P(6,4),給滿分2分,但考生答案錯誤,解答過程分析合理可酌情給1分)

⑶法一:在直線AC的下方的拋物線上存在點N,使NAC面積最大.

設N點的橫坐標為,此時點N,過點N作NG∥軸交AC于G;由點A(0,4)和點C(5,0)可求出直線AC的解析式為:;把代入得:,則G,

此時:NG=-(), 

=.       

∴當時,△CAN面積的最大值為

,得:,∴N(, -3).

法二:提示:過點N作軸的平行線交軸于點E,作CF⊥EN于點F,則

(再設出點N的坐標,同樣可求,余下過程略)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案