【題目】如圖,已知拋物線y=ax2+bx-3的對(duì)稱軸為直線x=1,交軸于、B兩點(diǎn),交y軸于C點(diǎn),其中B點(diǎn)的坐標(biāo)為(3,0).

(1)直接寫出點(diǎn)的坐標(biāo);

(2)求二次函數(shù)y=ax2+bx-3的解析式.

【答案】y=x2-2x-3.

【解析】(1)由拋物線y=ax2+bx-3的對(duì)稱軸為直線x=1,交x軸于A、B兩點(diǎn),其中B點(diǎn)的坐標(biāo)為(3,0),根據(jù)二次函數(shù)的對(duì)稱性,即可求得A點(diǎn)的坐標(biāo);
(2)利用待定系數(shù)法,將A(-1,0)、B(3,0)兩點(diǎn)的坐標(biāo)代入y=ax2+bx-3,即可求得二次函數(shù)y=ax2+bx-3的解析式,然后用配方法確定拋物線的頂點(diǎn)坐標(biāo).

解:(1)∵拋物線y=ax2+bx-3的對(duì)稱軸為直線x=1,交x軸于A、B兩點(diǎn),其中B點(diǎn)的坐標(biāo)為(3,0)

∴A點(diǎn)橫坐標(biāo)為:

∴A點(diǎn)的坐標(biāo)為:(-1,0);

(2)把A(-1,0)、B(3,0)兩點(diǎn)的坐標(biāo)代入y=ax2+bx-3,
,解得,
∴二次函數(shù)y=ax2+bx-3的解析式為y=x2-2x-3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角△ABC中,∠ACB=90°,點(diǎn)E在AC邊上,連結(jié)BE,作∠ACF=∠CBE交AB于點(diǎn)F,同時(shí)點(diǎn)D在BE上,且CD⊥AB.

(1)已知:如圖,=1,

①求證:△ACF≌△BCD.

②求的值.

(2)若=2,則的值是多少(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生參加社團(tuán)的情況,從2010年起,某市教育部門每年都從全市所有學(xué)生中隨機(jī)抽取2000名學(xué)生進(jìn)行調(diào)查,圖、圖是部分調(diào)查數(shù)據(jù)的統(tǒng)計(jì)圖(參加社團(tuán)的學(xué)生每人只能報(bào)一項(xiàng))根據(jù)統(tǒng)計(jì)圖提供的信息解決下列

問(wèn)題:

1)求圖科技類所在扇形的圓心角α的度數(shù)

2)該市2012年抽取的學(xué)生中,參加體育類與理財(cái)類社團(tuán)的學(xué)生共有多少人?

3)該市2014年共有50000名學(xué)生,請(qǐng)你估計(jì)該市2014年參加社團(tuán)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句中正確的是( )

A. 圓周角的度數(shù)等于它所對(duì)弧的度數(shù)的一半 B. 三點(diǎn)確定一個(gè)圓

C. 圓有四條對(duì)稱軸 D. 各邊相等的多邊形是正多邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( )

A. 射線AB和射線BA是同一條射線 B. 延長(zhǎng)線段AB和延長(zhǎng)線段BA的含義是相同的

C. 延長(zhǎng)直線AB D. 經(jīng)過(guò)兩點(diǎn)可以畫一條直線,并且只能畫一條直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】_____的相反數(shù)是4,0的相反數(shù)是_____,﹣(﹣4)的相反數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算和解方程

(1) (2)

(3); (4)

(5). (6)(2x-3)2=36

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是(

A. 等弧所對(duì)圓周角相等 B. 同弧所對(duì)圓周角相等

C. 同圓中,相等的圓周角所對(duì)弧也相等 D. 同圓中,等弦所對(duì)的圓周角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形OABC是邊長(zhǎng)為4的正方形,點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)O、A不重合),連接CP,過(guò)點(diǎn)P作PMCP交AB于點(diǎn)D,且PM=CP,過(guò)點(diǎn)M作MNAO,交BO于點(diǎn)N,連結(jié)ND、BM,設(shè)OP=t.

(1)求點(diǎn)M的坐標(biāo)(用含t的代數(shù)式表示);

(2)試判斷線段MN的長(zhǎng)度是否隨點(diǎn)P的位置的變化而改變?并說(shuō)明理由.

(3)當(dāng)t為何值時(shí),四邊形BNDM的面積最小;

(4)在x軸正半軸上存在點(diǎn)Q,使得QMN是等腰三角形,請(qǐng)直接寫出不少于4個(gè)符合條件的點(diǎn)Q的坐標(biāo)(用含t的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案