【題目】20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:

20筐白菜中,最重的一筐比最輕的一筐多重多少千克?

⑵與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過或不足多少千克?

⑶若白菜每千克售價(jià)1.6元,則出售這20筐白菜可賣多少元?(結(jié)果保留整數(shù))

【答案】(1)5.5千克;(2)1千克;(3)802元.

【解析】

(1)最重的一筐減去最輕的一筐白菜,即可得到答案;

(2)超過或不足的千克數(shù)分別乘以筐數(shù),求和,即可得到答案;

(3)白菜每千克的售價(jià)乘以白菜的總重量,即可得到答案.

(1)2.5-(-3)=5.5(千克)

答:最重的一筐比最輕的一筐重5.5千克;

(2)=1(千克

答:與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過1千克;

(3)

答:售出這20筐白菜可賣802.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(建立概念)如下圖,A、B為數(shù)軸上不重合的兩定點(diǎn),點(diǎn)P也在該數(shù)軸上,我們比較線段的長度,將較短線段的長度定義為點(diǎn)P到線段靠近距離”.特別地,若線段的長度相等,則將線段的長度定義為點(diǎn)P到線段靠近距離”.

(概念理解)如下圖,數(shù)軸的原點(diǎn)為O,點(diǎn)A表示的數(shù)為,點(diǎn)B表示的數(shù)為4.

1)點(diǎn)O到線段靠近距離________;

2)點(diǎn)P表示的數(shù)為m,若點(diǎn)P到線段靠近距離3,則m的值為_________

(拓展應(yīng)用)(3)如下圖,在數(shù)軸上,點(diǎn)P表示的數(shù)為,點(diǎn)A表示的數(shù)為,點(diǎn)B表示的數(shù)為6. 點(diǎn)P以每秒2個(gè)單位長度的速度向正半軸方向移動時(shí),點(diǎn)B同時(shí)以每秒1個(gè)單位長度的速度向負(fù)半軸方向移動.設(shè)移動的時(shí)間為秒,當(dāng)點(diǎn)P到線段靠近距離3時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),將一副直角三角板按如圖所示的方式擺放,其中三角形ABC為含60°角的直角三角板,三角形BDE為含45°角的直角三角板.

1)如圖1,若點(diǎn)DAB上,則∠EBC的度數(shù)為  ;

2)如圖2,若∠EBC170°,則∠α的度數(shù)為  

3)如圖3,若∠EBC118°,求∠α的度數(shù);

4)如圖3,若<∠α60°,求∠ABE-∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y = x2 + bx + c的圖象經(jīng)過點(diǎn)Al ,0) ,B﹣3 ,0,與y軸交于點(diǎn)C ,拋物線的頂點(diǎn)為D ,對稱軸與x軸相交于點(diǎn)E ,連接BD

(1)求拋物線的解析式

(2)若點(diǎn)P在直線BD上,當(dāng)PE = PC時(shí),求點(diǎn)P的坐標(biāo)

(3)在(2)的條件下,作PF⊥x軸于F ,點(diǎn)Mx軸上一動點(diǎn)N為直線PF上一動點(diǎn) ,G為拋物線上一動點(diǎn),當(dāng)以點(diǎn)F ,N ,G ,M 四點(diǎn)為頂點(diǎn)的四邊形為正方形時(shí),求點(diǎn)M的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O在直線AB,OCAB .RtΔODE中,∠ODE=90°,∠DOE=30°,先將ΔODE一邊OEOC重合(如圖1),然后將ΔODE繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)(如圖2),當(dāng)OEOC 重合時(shí)停止旋轉(zhuǎn).

(1)當(dāng)∠AOD=80°時(shí),則旋轉(zhuǎn)角∠COE的大小為____________ ;

(2)當(dāng)ODOCOB之間時(shí),求∠AODCOE的值;

(3)ΔODE的旋轉(zhuǎn)過程中,若∠AOE=4COD時(shí),求旋轉(zhuǎn)角∠COE的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)O,OAC的中點(diǎn),AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進(jìn)多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),

且∠ABM=∠BAM,連接BM,MN,BN.

(1)求證:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,點(diǎn)E在對角線AC上,連接BE、DE,

1如圖1,作EMABAB于點(diǎn)M,當(dāng)AE=時(shí),求BE的長;

2如圖2,作EGBECD于點(diǎn)G,求證:BE=EG

3如圖3,作EFBCBC于點(diǎn)F,設(shè)BF=x,BEF的面積為y當(dāng)x取何值時(shí),y取得最大值,最大值是多少?當(dāng)BEF的面積取得最大值時(shí),在直線EF取點(diǎn)P,連接BP、PC,使得∠BPC=45°,求EP的長度

查看答案和解析>>

同步練習(xí)冊答案