【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A,點(diǎn)B,與y軸負(fù)半軸交于點(diǎn)C,且OC=OB,其中B點(diǎn)坐標(biāo)為(3,0),對稱軸l為直線x=,D為拋物線頂點(diǎn).
(1)求拋物線的解析式;
(2)P為拋物線上一點(diǎn)(不與C重合),橫坐標(biāo)為m,連接AP,若∠PAB=∠CAB,求m的值;
(3)在(2)的條件下,AP交l于點(diǎn)Q,連接AD,點(diǎn)N為線段QD上一動點(diǎn)(不與Q、D重合),且點(diǎn)N的縱坐標(biāo)為n.過點(diǎn)N作直線與線段DA相交于點(diǎn)M,若對于每一個確定的n的值,有且只有一個△DMN與△DAQ相似,請直接寫出n的取值范圍.
【答案】(1)拋物線的解析式為y=;(2)m=6;(3)
【解析】
(1)先確定出點(diǎn)A坐標(biāo),再用待定系數(shù)法即可得出結(jié)論;
(2)先確定出直線AP的解析式,進(jìn)而用m表示點(diǎn)P的坐標(biāo),即可得出結(jié)論;
(3)當(dāng)時(shí),, 求出n的取值范圍為: ;當(dāng)MN與AQ不平行時(shí),,若對于每一個確定的n的值,有且只有一個△DMN與△DAQ相似,則可求出n的取值范圍.
解:(1)∵B(3,0),對稱軸為直線x=
∴A(-2,0),
∴拋物線的解析式為y=a(x+2)(x-3)=
令x=0,則y=-6a,
∵B(3,0),
∴OB=3,
∵OC=OB,
∴OC=3,
∴C(0,-3),
∴-6a=-3,
∴a=
∴拋物線的解析式為y=
(2)如圖,
∵∠PAB=∠CAB
∴作射線AP與y軸的交點(diǎn)記作點(diǎn)C',
∵∠BAC=∠BAC',OA=OA,∠AOC=∠AOC'=90°,
∴△AOC≌△AOC'(ASA),
∴OC'=OC=3,
∴C'(0,3),
∵A(-2,0),
∴直線AP的解析式為
∵點(diǎn)P(m,p)在直線AP上,
∴
∴
把代入y=得:
解得:
∵A(-2,0)
∴m=6
(3)當(dāng)x=時(shí),y=
∴D
當(dāng)x=時(shí),
∴Q
∴DQ=
當(dāng)時(shí),,
∴n的取值范圍為:
當(dāng)MN與AQ不平行時(shí),,
如圖:當(dāng)A,M重合時(shí):DM= DA=
∵
,
;
∴n的取值范圍為:時(shí),
∵若對于每一個確定的n的值,有且只有一個△DMN與△DAQ相似,
∴n的取值范圍為:
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月份,我市某中學(xué)開展?fàn)幾觥拔搴眯」瘛闭魑谋荣惢顒,賽后隨機(jī)抽取了部分參賽學(xué)生的成績,按得分劃分為A,B,C,D四個等級,并繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
等級 | 成績(s) | 頻數(shù)(人數(shù)) |
A | 90<s≤100 | 4 |
B | 80<s≤90 | x |
C | 70<s≤80 | 16 |
D | s≤70 | 6 |
根據(jù)以上信息,解答以下問題:
(1)表中的x= ;
(2)扇形統(tǒng)計(jì)圖中m= ,n= ,C等級對應(yīng)的扇形的圓心角為 度;
(3)該校準(zhǔn)備從上述獲得A等級的四名學(xué)生中選取兩人做為學(xué)!拔搴眯」瘛敝驹刚,已知這四人中有兩名男生(用a1,a2表示)和兩名女生(用b1,b2表示),請用列表或畫樹狀圖的方法求恰好選取的是a1和b1的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有個質(zhì)地、大小完全相同的小球上分別標(biāo)有數(shù)字,,,,.先將標(biāo)有數(shù)字,,的小球放在第一個不透明的盒子里,再將其余小球放在第二個不透明的盒子里.現(xiàn)從第一個盒子里隨機(jī)取出一個小球,再從第二個盒子里隨機(jī)取出一個小球.兩次分別用x、y來表示.
(1)請利用列表或畫樹狀圖的方法中的一種方法,求(x,y)所有可能出現(xiàn)的結(jié)果總數(shù);
(2)求取出的兩個小球上的數(shù)字之和等于的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形中,D是上一點(diǎn),連接并將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到線段,連接交于點(diǎn)F.
(1)當(dāng)點(diǎn)D為中點(diǎn),且時(shí),___________;
(2)補(bǔ)全圖形,探究線段與之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為迎接中華人民共和國成立七十周年,開展了以“不忘初心,緬懷革命先烈,奮斗新時(shí)代”為主題的讀書活動.德育處對九年級學(xué)生九月份“閱讀該主題相關(guān)書籍的讀書量”(下面簡稱:“讀書量”)進(jìn)行了隨機(jī)抽樣調(diào)查,并對所有隨機(jī)抽取學(xué)生的“讀書量”(單位:本)進(jìn)行了統(tǒng)計(jì),繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖所示).
(1)請補(bǔ)全兩幅統(tǒng)計(jì)圖;本次抽樣調(diào)查抽取了名學(xué)生;
(2)求本次所抽取學(xué)生九月份“讀書量”的平均數(shù);
(3)已知該校九年級有500名學(xué)生,請你估計(jì)該校九年級學(xué)生中,九月份“讀書量”為5本的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長為1個單位長度),點(diǎn),,都在格點(diǎn)上,以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系.
(1)分別寫出點(diǎn),的坐標(biāo):________,畫出線段繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)的線段;
(2)若線段的中點(diǎn)在反比例函數(shù)的圖象上,則的值為________.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請估計(jì)愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011貴州安順,17,4分)已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動,當(dāng)△ODP是腰長為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“五一”國際勞動節(jié),某商場計(jì)劃購進(jìn)甲、乙兩種品牌的恤衫共100件,已知乙品牌每件的進(jìn)價(jià)比甲品牌每件的進(jìn)價(jià)貴30元,且用120元購買甲品牌的件數(shù)恰好是購買乙品牌件數(shù)的2倍.
(1)求甲、乙兩種品牌每件的進(jìn)價(jià)分別是多少元?
(2)商場決定甲品牌以每件50元出售,乙品牌以每件100元出售.為滿足市場需求,購進(jìn)甲種品牌的數(shù)量不少于乙種品牌數(shù)量的4倍,請你確定獲利最大的進(jìn)貨方案,并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com