如圖,在平面直角坐標系中,四邊形OABC四個頂點的坐標分別為O(0,0),A(-3,0),B(-4,2),C(-1,2).將四邊形OABC繞點O順時針旋轉90°后,點A、B、C分別落在點A′、B′、C′處.
(1)請你在所給的直角坐標系中畫出旋轉后的四邊形OA′B′C′;
(2)點C旋轉到點C′所經過的弧的半徑是
5
5
,點C經過的路線長是
5
2
π
5
2
π
分析:(1)根據(jù)網(wǎng)格結構找出點A、B、C的對應點A′、B′、C′的位置,然后順次連接即可;
(2)先利用勾股定理求出OC的長度,再根據(jù)弧長的計算公式列式進行計算即可得解.
解答:解:(1)如圖所示,四邊形OA′B′C′即為所求作的圖形;

(2)根據(jù)勾股定理,OC=
12+22
=
5
,
C經過的路線長=
90°×π•
5
180°
=
5
2
π.
點評:本題考查了利用旋轉變換作圖,弧長的計算,熟練掌握網(wǎng)格結構找出旋轉變換后的對應點的位置是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案