精英家教網(wǎng)如圖,直線y=-
43
x+8與x軸,y軸分別交于點A和B,M是OB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的解析式為
 
分析:把x的值代入即可求出y的值,即是點的坐標,再把坐標代入就能求出解析式.
解答:解:當x=0時,y=-
4
3
x+8=8,即B(0,8),
當y=0時,x=6,即A(6,0),
所以AB=AB′=10,即B′(-4,′0),
因為點B與B′關(guān)于AM對稱,
所以BB′的中點為(
0-4
2
,
8+0
2
),即(-2,4)在直線AM上,
設(shè)直線AM的解析式為y=kx+b,把(-2,4);(6,0),
代入可得y=-
1
2
x+3,
故答案為y=-
1
2
x+3.
點評:本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

12、如圖,直線l1∥l2,AB⊥l1,垂足為O,BC與l2相交于點E,若∠1=43°,則∠2=
133
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y=kx+4與x、y軸分別交于A、B兩點,且tan∠BAO=
43
,過點A的拋物線交y軸與點C,且OA=OC,并以直線x=2為對稱軸,點P是拋物線上的一個動點.
(1)求直線AB與拋物線的解析式;
(2)是否存在以點P為圓心的圓與直線AB及x軸都相切?若存在,求出點P的坐標,若不存在,試說明理由.
(3)連接OP并延長到Q點,使得PQ=OP,過點Q分別作QE⊥x軸于E,QF⊥y軸于F,設(shè)點P的橫坐標為x,矩形OEQF的周長為y,求y與x的函數(shù)關(guān)系.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,直線AB∥CD,EF⊥AB,垂足為O,F(xiàn)G與CD相交于H,若∠1=43°,則∠2=
133
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線AB與⊙O相切于點C,弦EF∥AB交OC于H,D是⊙O上一點,連接DE、DC、OF.
(1)若∠EDC=30°,則∠COF=
 
度;
(2)若EF=4
3
,CH=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,直線y=-
3
x+4
3
與x軸相交于點A,與直線y=
3
3
x相交于點P.
(1)求點P的坐標;
(2)求S△OPA的值;
(3)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運動t秒時,F(xiàn)的坐標為(a,0),矩形EBOF與△OPA重疊部分的面積為S.求:S與a之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案