【題目】作圖題:(不要求寫作法)如圖,在 10×10 的方格紙中,有一個格點四邊形 ABCD(即四邊形的頂點都在格點上)。①在給出的方格紙中,畫出四邊形 ABCD 向下平移 5 格后的四邊形 ABCD;②在給出的方格紙中,畫出四邊形 ABCD 關于直線 l 對稱的圖形 ABCD.

【答案】見解析

【解析】

在平移時要注意平移的方向和平移的距離.確定平移的方向和距離,先確定一組對應點;確定圖形中的關鍵點;利用第一組對應點和平移的性質確定圖中所有關鍵點的對應點;按原圖形順序依次連接對應點,所得到的圖形即為平移后的圖形.軸對稱圖形對應點到對稱軸的距離相等,利用此性質找對應點,順次連接即可.

作圖如圖:

畫出對應點的位置,連接即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個五角星.

1)計算:∠A+B+C+D+E的度數(shù).

2)當BE向上移動,過點A時,如圖2,五個角的和(即∠CAD+B+C+D+E)有無變化?說明你的理由.

3)如圖3,把圖2中的點C向上移到BD上時,五個角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有無變化?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強環(huán)保意識,某社區(qū)計劃開展一次“減碳環(huán)保,減少用車時間”的宣傳活動,對部分家庭五月份的平均每天用車時間進行了一次抽樣調查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽樣調查了多少個家庭?

(2)將圖中的條形圖補充完整,直接寫出用車時間的中位數(shù)落在哪個時間段內;

(3)求用車時間在1~1.5小時的部分對應的扇形圓心角的度數(shù);

(4)若該社區(qū)有車家庭有1600個,請你估計該社區(qū)用車時間不超過1.5小時的約有多少個家庭?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,△ABC是等邊三角形,四邊形ACFE是平行四邊形,AEBC

(1)如圖①,求證:ACFE是菱形;

(2)如圖②,點D是△ABC內一點,且∠ADB90°,∠EDC90°,∠ABD=∠ACE.求證:ACFE是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC BDE 都是等邊三角形,AB、D 三點共線.下列結論:①ABCD;②BFBG;③HB 平分∠AHD;④∠AHC60°,⑤△BFG 是等邊三角形.其中正確的有____________(只填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形的外角∠DCM的平分線CF于點F

1)圖1中若點E是邊BC的中點,我們可以構造兩個三角形全等來證明AE=EF,請敘述你的一個構造方案,并指出是哪兩個三角形全等(不要求證明);

2)如圖2,若點E在線段BC上滑動(不與點B,C重合).

①AE=EF是否一定成立?說出你的理由;

在如圖2所示的直角坐標系中拋物線y=ax2+x+c經(jīng)過A、D兩點,當點E滑動到某處時,點F恰好落在此拋物線上,求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

1

2)用公式法解:4x2312x;

3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,一次函數(shù) )和二次函數(shù) )的圖象可能為(

A. A B. B C. C D. D

查看答案和解析>>

同步練習冊答案