【題目】下面給出的四邊形ABCD中,∠A、∠B、∠C、∠D的度數(shù)之比,其中能判定四邊形ABCD是平行四邊形的條件是( )
A. 3∶4∶3∶4 B. 3∶3∶4∶4C. 2∶3∶4∶5D. 3∶4∶4∶3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.對角線互相垂直平分的四邊形是正方形
B.有一組對邊平行的四邊形是平行四邊形
C.有一個(gè)角是直角的平行四邊形是矩形
D.有一組鄰邊相等的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解題過程,并解答后面的問題:如圖1,在平面直角坐標(biāo)系中,,,為線段的中點(diǎn),求點(diǎn)的坐標(biāo).
解:分別過、作軸的平行線,過、作軸的平行線,兩組平行線的交點(diǎn)如圖1所示.
設(shè),則,,
由圖1可知:
∴
問題:
(1)已知,,,,則線段的中點(diǎn)坐標(biāo)為 ;
(2)□中,點(diǎn)、、的坐標(biāo)分別為,,,,,,求點(diǎn)的坐標(biāo);
(3)如圖2,點(diǎn),與點(diǎn)在函數(shù)的圖像上,點(diǎn),,點(diǎn)在軸上,以、、、四個(gè)點(diǎn)為頂點(diǎn)構(gòu)成平行四邊形,請你直接寫出所有滿足條件的點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次普法知識競賽共有30道題,規(guī)定答對一道題得4分,答錯(cuò)或不答,一道題得-1分,在這次競賽中,小明獲得優(yōu)秀(90或90分以上),則小明至少答對了 道題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點(diǎn)P(m+3,m+1)在x軸上,則點(diǎn)P的坐標(biāo)為( 。
A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,1)與點(diǎn)A′(5,b)是關(guān)于原點(diǎn)對稱,則a+b =________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)3×2的矩形(即長為3,寬為2)可以用兩種不同的方式分割成3或6個(gè)邊長是正整數(shù)的小正方形,即:小正方形的個(gè)數(shù)最多是6個(gè),最少是3個(gè).
(1)一個(gè)5×2的矩形用不同的方式分割后,小正方形的個(gè)數(shù)最多是 個(gè),最少是 個(gè);
(2)一個(gè)7×2的矩形用不同的方式分割后,小正方形的個(gè)數(shù)最多是 個(gè),最少是 個(gè);
(3)一個(gè)(2n+1)×2的矩形用不同的方式分割后,小正方形的個(gè)數(shù)最多是 個(gè),最少是 個(gè).(n是正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點(diǎn)D,連接CD.
(1)求證:∠A=∠BCD;
(2)若M為線段BC上一點(diǎn),試問當(dāng)點(diǎn)M在什么位置時(shí),直線DM與⊙O相切?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,探討角平分線的作法時(shí),李老師用直尺和圓規(guī)作角平分線,方法如下:
小穎的身邊只有刻度尺,經(jīng)過嘗試,她發(fā)現(xiàn)利用刻度尺也可以作角平分線.
根據(jù)以上情境,解決下列問題:
(1)李老師用尺規(guī)作角平分線時(shí),用到的三角形全等的判定方法是_________.
(2)小聰?shù)淖鞣ㄕ_嗎?請說明理由.
(3)請你幫小穎設(shè)計(jì)用刻度尺作角平分線的方法.(要求:作出圖形,寫出作圖步驟,不予證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com