【題目】圖1是一段圓柱體的樹干的示意圖,已知樹干的半徑r=10cm,AD=45cm. (π值取3)

(1)若螳螂在點A處,蟬在點C處,圖1中畫出了螳螂捕蟬的兩條路線,即A→D→C和A→C,圖2是該圓柱體的側(cè)面展開圖,判斷哪條路的距離較短,并說明理由;

(2)若螳螂在點A處,蟬在點D處,螳螂想要捕到這只蟬,但又怕蟬發(fā)現(xiàn),于是螳螂繞到

后方去捕捉它,如圖3所示,求螳螂爬行的最短距離;(提示: =75)

(3)圖4是該圓柱體的側(cè)面展開圖,蟬N在半徑為10cm的⊙O的圓上運動,⊙O與BC相切,點O到CD的距離為20cm,螳螂M在線段AD運動上,連接MN,MN即為螳螂捕蟬時螳螂爬行的距離,若要使MN與⊙O總是相切,求MN的長度范圍.

圖1 圖2 圖3 圖4

【答案】(1)A→C的距離較短;(2)螳螂爬行的最短距離為75cm;

(3)10cm≤MN≤5cm.

【解析】分析:(1)根據(jù)兩點之間線段最短,可判斷出A→C的距離較短;(2)由題意得出AD′的距離最短,再利用勾股定理即可求解;(3)連接MO,ON,當MO⊥AD時,MO最短,∴MN的長度最短,當點M與點A重合時,MO最長,從而得出MN的長度范圍.

本題解析:(1)由三角形三邊關系可知,AD+DC>AC, A→C的距離較短(2)如圖,AD′即為螳螂爬行的最短距離,AA′=60cm,A′D′=45cm,∴AD′= =75cm

(3)連接MO,ON,易得MN2+NO2=MO2. 當MO⊥AD時,MO最短,∴MN的長度最短,此時MO=30-10=20cm,∴MN=10cm. 當點M與點A重合時,MO最長,∴MN的長度最長. 過點O作OF⊥AB于點F. 易得MF=20cm,OF=25cm,∴MO=5cm,,∴MN=5cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列算式

……

1)請你按照三個算式的規(guī)律寫出第個算式 ,個算式 ;

2)試寫出第個算式,并證明之

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=60°,P為AB上一點, Q為BC延長線上一點,且PA=CQ,連PQ交AC邊于D, PD=DQ,證明:△ABC為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A(-3,2)關于x軸的對稱點A的坐標為( )

A. (-3,-2) B. (3,2) C. (3,-2) D. (2,-3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.                            

運動員甲測試成績表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

7

5

8

7

8

7

(1)寫出運動員甲測試成績的眾數(shù)和中位數(shù);

(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?為什么?(參考數(shù)據(jù):三人成績的方差分別為S2=0.8、S2=0.4、S2=0.8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx與x軸交于O,A(4,0)兩點,點B的坐標為(0,-3).

(1)求拋物線的對稱軸;

(2)已知點P在拋物線的對稱軸上,連接OP,BP. 若要使OP+BP的值最小,求出點P的坐標;

(3)將拋物線在x軸下方的部分沿x軸翻折,其余部分保持不變,得到一個新的圖象. 當直線y=x+m(m≠0)與這個新圖象有兩個公共點時,在反比例函數(shù)y=的圖象中,y的值隨x怎樣變化?判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種病毒的長度約為0.000043mm,用科學記數(shù)法表示這個數(shù)為_____________mm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形中,為正方形的外角的角平分線,點在線段上,過點于點,連接,過點于點,交射線于點

)如圖1,若點與點重合.

依題意補全圖1.

判斷的數(shù)量關系并加以證明.

)如圖2,若點恰好在線段上,正方形的邊長為,請寫出求長的思路(可以不寫出計算結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關系?并證明你的結(jié)論。

查看答案和解析>>

同步練習冊答案