【題目】一種病毒的長度約為0.000043mm,用科學(xué)記數(shù)法表示這個數(shù)為_____________mm

【答案】4.3×10-5

【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.

解:0.000043=4.3×10-5,
故答案為:4.3×10-5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請你閱讀下列計算過程,再回答所提出的問題:

題目計算

解:原式= (A)

= (B)

=x-3-3(x+1) (C)

=-2x-6 (D)

(1)上述計算過程中,從哪一步開始出現(xiàn)錯誤:_______________

(2)如果假設(shè)基于之前步驟正確的前提下,從B到C是否正確,若不正確,錯誤的原因是____________________________________________________

(3)請你正確解答。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的3條線段,能首尾依次相接組成三角形的是(  

A.1,2,4B.8,64C.15,5,6D.1,34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是一段圓柱體的樹干的示意圖,已知樹干的半徑r=10cm,AD=45cm. (π值取3)

(1)若螳螂在點(diǎn)A處,蟬在點(diǎn)C處,圖1中畫出了螳螂捕蟬的兩條路線,即A→D→C和A→C,圖2是該圓柱體的側(cè)面展開圖,判斷哪條路的距離較短,并說明理由;

(2)若螳螂在點(diǎn)A處,蟬在點(diǎn)D處,螳螂想要捕到這只蟬,但又怕蟬發(fā)現(xiàn),于是螳螂繞到

后方去捕捉它,如圖3所示,求螳螂爬行的最短距離;(提示: =75)

(3)圖4是該圓柱體的側(cè)面展開圖,蟬N在半徑為10cm的⊙O的圓上運(yùn)動,⊙O與BC相切,點(diǎn)O到CD的距離為20cm,螳螂M在線段AD運(yùn)動上,連接MN,MN即為螳螂捕蟬時螳螂爬行的距離,若要使MN與⊙O總是相切,求MN的長度范圍.

圖1 圖2 圖3 圖4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把代數(shù)式2x2﹣18分解因式,結(jié)果正確的是(
A.2(x2﹣9)
B.2(x﹣3)2
C.2(x+3)(x﹣3)
D.2(x+9)(x﹣9)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個等腰三角形的兩邊長分別為52,則這個三角形的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下每戶每月用水不超過6m3,水費(fèi)按1.6/m3收費(fèi);每戶每月用水超過6m3,超過的部分按4/m3收費(fèi).設(shè)每戶每月用水量為xm3),應(yīng)繳水費(fèi)為y

1)寫出每月用水不超過6m3和超過6m3yx之間的函數(shù)關(guān)系式

2)已知某戶5月份的用水量為8m3,求該用戶5月份的水費(fèi)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長方形具有四個內(nèi)角均為直角,并且兩組對邊分別相等的特征.如圖,把一張長方形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.

(1)如果∠DEF=123°,求∠BAF的度數(shù);

(2)判斷△ABF和△AGE是否全等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,點(diǎn)A、B、C的坐標(biāo)分別為(-1,0)、(-2,3)、(-3,1).

(1)作出△ABC關(guān)于x軸對稱的 △A1B1C1,并寫出B1、C1

兩點(diǎn)的坐標(biāo):B1: , C1:

(2)△ABC的面積SABC=

(3)D點(diǎn)在y軸上運(yùn)動,CD+DA的最小值

查看答案和解析>>

同步練習(xí)冊答案