如圖,在□ABDC中,分別取AC、BD的中點E和F,連接BE、CF,過點A作AP∥BC,交DC的延長線于點P.

(1)求證:△ABE≌△DCF;
(2)當∠P滿足什么條件時,四邊形BECF是菱形?證明你的結論.
見解析

試題分析:(1)因為ABCD是平行四邊形,所以對角相等,對邊相等。而E、F又是對邊中點,利用“SAS”             即可證明△ABE≌△DCF
(2)∠P=90°時,四邊形BECF是菱形。
要使四邊形BECF是菱形,只要鄰邊相等即可,也就是說只要滿足BE=EC即可,假設BE=EC,由于AE=EC,所以有AE=BE,BE=CE,所以∠ABE=∠BAE,∠EBC=∠ECB,而∠ABE+∠BAE+∠EBC+∠ ECB=180°(△ABC內角和).所以2∠ABE+2∠EBC=180°,所以∠ABE+∠EBC=90°,即∠ABC=90°,由于AB//CP,AP//BC,所以四邊形BAPC是平行四邊形,所以∠P=∠ABC=90º.
試題解析:
(1)證明:∵ABCD是平行四邊形,
∴∠A=∠D,AB=CD,BD=AC
∵E、F分別為AC,BD中點
∴AE=FD
在△ABE和△DCF中,
AB=CD,∠A=∠D,AE=FD
∴△ABE≌△DCF
(2)解:問題可知使四邊形BECF是菱形,
∴BE=EC
又∵AE=EC
∴∠EBC=∠ECB
BE=AE
∴∠A=∠ABE
∵∠A+∠ABE+∠EBC+∠ECB=180º
∴2∠ABE+2∠EBC=180º
∴∠ABE+∠EBC=90º
∴∠ABC=90º
又∵AB//CP,AP//BC
∴四邊形BAPC是平行四邊形
∴∠P=∠ABC=90º
即∠P=90º時,四邊形BECF是菱形
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,點P是AB的中點,連接DP,過點B作BE⊥DP交DP的延長線于點E,連接AE,過點A作AF⊥AE交DP于點F,連接BF.

(1)若AE=2,求EF的長;
(2)求證:PF=EP+EB.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,DC∥AB,BD平分∠ADC,∠ADC=60°,過點B作BE⊥DC,過點A作AF⊥BD,垂足分別為E、F,連接EF判斷△BEF的形狀,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

課本中把長與寬之比為的矩形紙片稱為標準紙.請解決下列問題:
(1)將一張標準紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標準紙.請給予證明;

(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進行如下操作:
第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);
第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙) .此時E點恰好落在AE邊上的點M處;
第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.

請你研究,矩形紙片ABCD是否是一張標準紙?請說明理由.
(3)不難發(fā)現(xiàn),將一張標準紙如圖3一次又一次對開后,所得的矩形紙片都是標準紙.現(xiàn)有一張標準紙ABCD,AB=1,BC=,問第5次對開后所得標準紙的周長是多少?探索并直接寫出第2002次對開后所得標準紙的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,梯形ABCD中,AD//BC,AD=2,BC=8,AC=6,BD=8,則梯形ABCD的面積是       .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在□ABCD中,∠ABC的平分線交AD于點E,且AE=DE=1,則□ABCD的周長等于      .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點.若AB=5,AD=12,則四邊形ABOM的周長為_________

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

等腰梯形兩底長分別為5cm和11cm,一個底角為60°,則腰長為_   __.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分別為E,D,DE=3,BD=5,則腰長AB=     

查看答案和解析>>

同步練習冊答案