如圖,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分別為E,D,DE=3,BD=5,則腰長AB=     

試題分析:∵DE=3,BD=5,DE⊥BC,∴
又∵BD⊥DC,∴,即,解得。
∵梯形ABCD是等腰梯形,AD∥BC,∴AB=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在□ABDC中,分別取AC、BD的中點E和F,連接BE、CF,過點A作AP∥BC,交DC的延長線于點P.

(1)求證:△ABE≌△DCF;
(2)當∠P滿足什么條件時,四邊形BECF是菱形?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)如圖,在長方形ABCD中,將△ABC沿AC對折至△AEC位置,CE與AD交于點F.

(1)試說明:AF=FC;
(2)如果AB=3,BC=4,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖①,將四邊形紙片ABCD沿兩組對邊中點連線剪切為四部分,將這四部分密鋪可得到如圖②所示的平行四邊形,若要密鋪后的平行四邊形為矩形,則四邊形ABCD需要滿足的條件是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DG⊥AE,垂足為G,若DG=1,則AE的邊長為
A.B.C.4D.8

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若矩形ABCD的對角線長為10,點E、F、G、H分別是AB、BC、CD、DA的中點,則四邊形EFGH的周長是   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:在矩形ABCD中,E為邊BC上的一點,AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點,EF=7,連接AF。如圖1,現(xiàn)有一張硬紙片△GMN,∠NGM=900,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點N與點E重合,點G在線段DE上。如圖2,△GMN從圖1的位置出發(fā),以每秒1個單位的速度沿EB向點B勻速移動,同時,點P從A點出發(fā),以每秒1個單位的速度沿AD向點D勻速移動,點Q為直線GN與線段AE的交點,連接PQ。當點N到達終點B時,△GMNP和點同時停止運動。設運動時間為t秒,解答問題:

(1)在整個運動過程中,當點G在線段AE上時,求t的值;
(2)在整個運動過程中,是否存在點P,使△APQ是等腰三角形,若存在,求出t的值;若不存在,說明理由;
(3)在整個運動過程中,設△GMN與△AEF重疊部分的面積為S,請直接寫出S與t的函數(shù)關系式以及自變量t的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點E,F(xiàn)分別是銳角∠A兩邊上的點,AE=AF,分別以點E,F(xiàn)為圓心,以AE的長為半徑畫弧,兩弧相交于點D,連接DE,DF.

(1)請你判斷所畫四邊形的性狀,并說明理由;
(2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在ABCD中,點E,F(xiàn)分別在BC,AD上,且BE=FD,求證:四邊形AECF是平行四邊形.

查看答案和解析>>

同步練習冊答案