【題目】閱讀與應(yīng)用:
閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)?/span>,所以,從而(當(dāng)a=b時(shí)取等號(hào)).
閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知: ,所以當(dāng)即時(shí),函數(shù)的最小值為.
閱讀理解上述內(nèi)容,解答下列問(wèn)題:
問(wèn)題1:已知一個(gè)矩形的面積為4,其中一邊長(zhǎng)為x,則另一邊長(zhǎng)為,周長(zhǎng)為,求當(dāng)x=__________時(shí),周長(zhǎng)的最小值為_(kāi)_________.
問(wèn)題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時(shí), 的最小值為_(kāi)_________.
問(wèn)題3:某民辦學(xué)習(xí)每天的支出總費(fèi)用包含以下三個(gè)部分:一是教職工工資6400元;二是學(xué)生生活費(fèi)每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))
【答案】問(wèn)題1: 2 8 問(wèn)題2: 3 8 問(wèn)題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,依題意得: ,因?yàn)?/span>x>0,所以,當(dāng)即x=800時(shí),y取最小值26.答:當(dāng)學(xué)校學(xué)生人數(shù)為800人時(shí),該校每天生均投入最低,最低費(fèi)用是26元.
【解析】試題
問(wèn)題1:當(dāng) 時(shí),周長(zhǎng)有最小值,求x的值和周長(zhǎng)最小值;
問(wèn)題2:變形,由當(dāng)x+1= 時(shí), 的最小值,求出x值和的最小值;
問(wèn)題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,根據(jù)生均投入=支出總費(fèi)用÷學(xué)生人數(shù),列出關(guān)系式,根據(jù)前兩題解法,從而求解.
試題解析:
問(wèn)題1:∵當(dāng) ( x>0)時(shí),周長(zhǎng)有最小值,
∴x=2,
∴當(dāng)x=2時(shí),有最小值為=4.即當(dāng)x=2時(shí),周長(zhǎng)的最小值為2×4=8;
問(wèn)題2:∵y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),
∴,
∵當(dāng)x+1= (x>-1)時(shí), 的最小值,
∴x=3,
∴x=3時(shí), 有最小值為4+4=8,即當(dāng)x=3時(shí), 的最小值為8;
問(wèn)題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,則生均投入y元,依題意得
,因?yàn)?/span>x>0,所以,當(dāng)即x=800時(shí),y取最小值26.
答:當(dāng)學(xué)校學(xué)生人數(shù)為800
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖:在平面直角坐標(biāo)系中,點(diǎn)D是直線y=﹣x上一點(diǎn),過(guò)O、D兩點(diǎn)的圓⊙O1分別交x軸、y軸于點(diǎn)A和B.
(1)當(dāng)A(﹣12,0),B(0,﹣5)時(shí),求O1的坐標(biāo);
(2)在(1)的條件下,過(guò)點(diǎn)A作⊙O1的切線與BD的延長(zhǎng)線相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);
(3)若點(diǎn)D的橫坐標(biāo)為,點(diǎn)I為△ABO的內(nèi)心,IE⊥AB于E,當(dāng)過(guò)O、D兩點(diǎn)的⊙O1的大小發(fā)生變化時(shí),其結(jié)論:AE﹣BE的值是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,請(qǐng)求出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了維護(hù)國(guó)家主權(quán)和海洋權(quán)力,海監(jiān)部門對(duì)我國(guó)領(lǐng)海實(shí)行常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時(shí)30海里的速度向正東方航行,在處測(cè)得燈塔在北偏東60°方向上, 繼續(xù)航行后到達(dá)處, 此時(shí)測(cè)得燈塔在北偏東30°方向上.
(1) 求的度數(shù);
(2)已知在燈塔的周圍15海里內(nèi)有暗礁,問(wèn)海監(jiān)船繼續(xù)向正東方向航行是否安全?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了調(diào)查學(xué)生對(duì)教學(xué)的滿意度,隨機(jī)抽取了部分學(xué)生作問(wèn)卷調(diào)查:用“”表示“很滿意”,“”表示“滿意”,“”表示“比較滿意”,“”表示“不滿意”,下圖是工作人員根據(jù)問(wèn)卷調(diào)查統(tǒng)計(jì)資料繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問(wèn)題:
(1)本次問(wèn)卷調(diào)查,共調(diào)查了多少名學(xué)生?
(2)將圖甲中“”部分的圖形補(bǔ)充完整;
(3)求出圖乙中扇形的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是矩形紙片,翻折∠B、∠D,使BC、AD恰好落在AC上.設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn).
(1)求證:四邊形AECG是平行四邊形:
(2)若AB=8cm,BC=6cm,求線段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在8×8的正方形網(wǎng)格中,△ABC的頂點(diǎn)在邊長(zhǎng)為1的小正方形的頂點(diǎn)上
(1) 填空∠ABC=___________
(2) 若點(diǎn)A在網(wǎng)格所在的坐標(biāo)平面內(nèi)的坐標(biāo)為(1,-2),請(qǐng)建立平面直角坐標(biāo)系,D是平面直角坐標(biāo)系中一點(diǎn),并作出以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)的平行四邊形,直接寫出滿足條件的D點(diǎn)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】光華農(nóng)機(jī)租賃公司共有50臺(tái)聯(lián)合收割機(jī),其中甲型20臺(tái),乙型30臺(tái),先將這50臺(tái)聯(lián)合收割機(jī)派往A、B兩地區(qū)收割小麥,其中30臺(tái)派往A地區(qū),20臺(tái)派往B地區(qū).兩地區(qū)與該農(nóng)機(jī)租賃公司商定的每天的租賃價(jià)格見(jiàn)表:
每臺(tái)甲型收割機(jī)的租金 | 每臺(tái)乙型收割機(jī)的租金 | |
A地區(qū) | 1800 | 1600 |
B地區(qū) | 1600 | 1200 |
(1)設(shè)派往A地區(qū)x臺(tái)乙型聯(lián)合收割機(jī),租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金為y(元),求y與x間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)若使農(nóng)機(jī)租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金總額不低于79 600元,說(shuō)明有多少種分配方案,并將各種方案設(shè)計(jì)出來(lái);
(3)如果要使這50臺(tái)聯(lián)合收割機(jī)每天獲得的租金最高,請(qǐng)你為光華農(nóng)機(jī)租賃公司提一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E、F分別在AD、CD上,AF、BE相交于點(diǎn)G,且AF=BE,則下列結(jié)論不正確的是:( )
A.AF⊥BEB.BG=GFC.AE=DFD.∠EBC=∠AFD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求作圖
在下面的網(wǎng)格中,已知△ABC的頂點(diǎn)分別落在網(wǎng)格的格點(diǎn),點(diǎn)A′、C′分別是點(diǎn)A、C兩點(diǎn)繞某一點(diǎn)O旋轉(zhuǎn)同樣的角度后的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)?jiān)谙聢D中作出旋轉(zhuǎn)中心O的位置;
(2)點(diǎn)A′是點(diǎn)A繞點(diǎn)O旋轉(zhuǎn) 度形成的;
(3)畫出△ABC繞點(diǎn)O旋轉(zhuǎn)同樣的角度后的△A′B'C’.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com