【題目】如圖,在RtABC中,∠C90°,AC6BC8D,E分別為邊BC,AC上一點(diǎn),將△ADE沿著直線AD翻折,點(diǎn)E落在點(diǎn)F處,如果DFBC,△AEF是等邊三角形,那么AE_____

【答案】4

【解析】

由題意可得∠CAD=30°,∠AEF=60°,根據(jù)勾股定理可求CD=2,由ACDF,則∠AEF=EFD=60°,且DE=DF,可得∠DEF=DFE=60°,可得∠DEC=60°.根據(jù)勾股定理可求EC的長(zhǎng),即可求AE的長(zhǎng).

如圖:

∵折疊,

∴∠EAD=∠FADDEDF,

∴∠DFE=∠DEF;

∵△AEF是等邊三角形,

∴∠EAF=∠AEF60°,

∴∠EAD=∠FAD30°;

RtACD中,AC6,∠CAD30°,

CD2

FDBC,ACBC

ACDF,

∴∠AEF=∠EFD60°,

∴∠FED60°;

∵∠AEF+DEC+DEF180°,

∴∠DEC60°;

∵在RtDEC中,∠DEC60°,CD2

EC2;

AEACEC

AE624;

故答案為:4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4,n),B1,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).、(1)求△AOB的面積;(2)求不等式kx+b0的解集(請(qǐng)直接寫(xiě)出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).

(1)如圖1,當(dāng)k=1時(shí),直接寫(xiě)出A,B兩點(diǎn)的坐標(biāo);

(2)在(1)的條件下,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AB下方,試求出ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點(diǎn)C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),是否存在實(shí)數(shù)k使得直線y=kx+1與以O(shè)、C為直徑的圓相切?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P1,m)、Qn,1)在反比例函數(shù)y的圖象上,直線ykx+b經(jīng)過(guò)點(diǎn)PQ,且與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn).

1)求 kb的值;

2O為坐標(biāo)原點(diǎn),C在直線ykx+b上且ABAC,點(diǎn)D在坐標(biāo)平面上,順次聯(lián)結(jié)點(diǎn)O、BC、D的四邊形OBCD滿(mǎn)足:BCOD,BOCD,求滿(mǎn)足條件的D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖AB分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為-20,B點(diǎn)對(duì)應(yīng)的數(shù)為80.

1)請(qǐng)寫(xiě)出AB的中點(diǎn)M對(duì)應(yīng)的數(shù).

2)現(xiàn)在有一只電子螞蟻PB點(diǎn)出發(fā),以2個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以3個(gè)單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,

①你知道經(jīng)過(guò)幾秒兩只電子螞蟻相遇?

②點(diǎn)C對(duì)應(yīng)的數(shù)是多少?

③經(jīng)過(guò)多長(zhǎng)時(shí)間兩只電子螞蟻在數(shù)軸上相距15個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABCD為正方形,將正方形的邊CB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到CE,記BCE,連接BE,DE,過(guò)點(diǎn)CCFDEF,交直線BEH

(1)當(dāng)α=60°時(shí),如圖1,則BHC= ;

(2)當(dāng)45°<α<90°,如圖2,線段BHEH、CH之間存在一種特定的數(shù)量關(guān)系,請(qǐng)你通過(guò)探究,寫(xiě)出這個(gè)關(guān)系式: (不需證明);

(3)當(dāng)90°<α<180°,其它條件不變(如圖3),(2)中的關(guān)系式是否還成立?若成立,說(shuō)明理由;若不成立,寫(xiě)出你認(rèn)為成立的結(jié)論,并簡(jiǎn)要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)舉行“中華誦經(jīng)典誦讀”大賽,小學(xué)、中學(xué)組根據(jù)初賽成績(jī),各選出5名選手組成小學(xué)代表隊(duì)和中學(xué)代表隊(duì)參加市級(jí)決賽,兩個(gè)代表隊(duì)各選出的5名選手的決賽成績(jī)分別繪制成下列兩個(gè)統(tǒng)計(jì)圖

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均數(shù)(分

中位數(shù)(分

眾數(shù)(分

小學(xué)組

85

100

中學(xué)組

85

1)寫(xiě)出表格中,的值:    ,  

2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績(jī)較好?

3)計(jì)算兩隊(duì)決賽成績(jī)的方差,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在平面直角坐標(biāo)系中,、,其中、滿(mǎn)足關(guān)系式,平移使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).

1)直接寫(xiě)出兩點(diǎn)的坐標(biāo),則______,______)、______,______.

2)如圖1,過(guò)點(diǎn)軸交于點(diǎn),猜想數(shù)量關(guān)系,并說(shuō)明理由.

3)如圖2,過(guò)點(diǎn)軸交軸于點(diǎn),軸上點(diǎn)左側(cè)的一動(dòng)點(diǎn),連接平分,平分,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),的值是否變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m,寬為n)的盒子底部(如圖②),盒子底部未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分周長(zhǎng)和是_________(用代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案