已知,△ABC為等邊三角形,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
【小題1】如圖1,當點D在邊BC上時,
①求證:∠ADB=∠AFC;②請直接判斷結論∠AFC=∠ACB+∠DAC是否成立;
【小題2】如圖2,當點D在邊BC的延長線上時,其他條件不變,結論∠AFC=∠ACB+∠DAC是否成立?請寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關系,并寫出證明過程;
【小題3】如圖3,當點D在邊CB的延長線上時,且點A、F分別在直線BC的異側,其他條件不變,請補全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關系.

【小題1】①證明:∵△ABC為等邊三角形,

∴AB=AC,∠BAC=60°.
∵∠DAF=60°,∴∠BAC=∠DAF.∴∠BAD=∠CAF.
∵四邊形ADEF是菱形,∴AD=AF.
∴△ABD≌△ACF.∴∠ADB=∠AFC.
②結論:∠AFC=∠ACB+∠DAC成立.
【小題2】結論∠AFC=∠ACB+∠DAC不成立.
∠AFC、∠ACB、∠DAC之間的等量關系是:
∠AFC=∠ACB∠DAC(或這個等式的正確變式).
證明:∵△ABC為等邊三角形,

∴AB=AC,∠BAC= 60°.
∵∠DAF = 60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF.
∵四邊形ADEF是菱形,∴AD=AF.
∴△ABD≌△ACF,∴∠ADC=∠AFC.
又∵∠ACB=∠ADC+∠DAC,
∴∠AFC=∠ACB-∠DAC
【小題3】補全圖形如下圖:
∠AFC、∠ACB、∠DAC之間的等量關系是:∠AFC=2∠ACB-∠DAC(或∠AFC+∠DAC+∠ACB=180°以及這兩個等式的正確變式).解析:
(1)此題只需由AB=AC,AD=AF,∠BAD=∠CAF,按照SAS判斷兩三角形全等得出∠ADB=∠AFC;
(2)此題應先判斷得出正確的等量關系,然后再根據(jù)△ABD≌△ACF即可證明;
(3)此題只需補全圖形后由圖形即可得出∠AFC、∠ACB、∠DAC之間存在的等量關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、已知,△ABC為等邊三角形,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
(1)如圖1,當點D在邊BC上時,
求證:∠ADB=∠AFC;②請直接判斷結論∠AFC=∠ACB+∠DAC是否成立;
(2)如圖2,當點D在邊BC的延長線上時,其他條件不變,結論∠AFC=∠ACB+∠DAC是否成立?請寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關系,并寫出證明過程;
(3)如圖3,當點D在邊CB的延長線上時,且點A、F分別在直線BC的異側,其他條件不變,請補全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:△ABC為等邊三角形,D、F分別為射線BC、射線AB邊上的點,BD=AF,以AD為邊作等邊△ADE.
(1)如圖①所示,當點D在線段BC上時:
①試說明:△ACD≌△CBF;②判斷四邊形CDEF的形狀,并說明理由;
(2)如圖②所示,當點D在BC的延長線上時,判斷四邊形CDEF的形狀,并說明理由.
(3)當點D在射線BC上移動到何處時,∠DEF=30°,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:△ABC為等邊三角形,邊長為2cm,求等邊△ABC的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:△ABC為等邊三角形,點M是射線BC上任意一點,點N是射線CA上任意一點,且BM=CN,直線BN與AM相交于Q點
(1)觀察圖中是否有全等三角形?若有,直接寫出:
△ABM≌△BCN
△ABM≌△BCN
;(寫出一對即可)
(2)求∠BQM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:△ABC為等邊三角形,D,E,F(xiàn)分別是AB,BC,CA上的點,且AD:DB=BE:EC=CF:FA.△ABC∽
△DEF
△DEF

查看答案和解析>>

同步練習冊答案