【題目】如圖 ,∠E=∠F=90°,∠B=∠C,AC=AB,給出下列結(jié)論:① ∠1=∠2;② BE=CF;③ △ACN≌△ABM;④ CD=DN,其中正確的結(jié)論有( )個
A.1B.2C.3D.4
【答案】C
【解析】
①由∠E=∠F=90°、∠B=∠C,利用等角的余角相等可得出∠1=∠2,結(jié)論①正確;②由∠B=∠C、∠E=∠F、AE=AF,即可證出△BAE≌△CAF(AAS),根據(jù)全等三角形的性質(zhì)可得出BE=CF,結(jié)論②正確;③由△BAE≌△CAF可得出AB=AC,結(jié)合∠C=∠B、∠CAN=∠BAM即可證出△ACN≌△ABM(ASA),結(jié)論③正確;④通過證△BDN≌△CDM可得出DN=DM,根據(jù)三角形外角的性質(zhì)結(jié)合等腰三角形的性質(zhì)即可得出CD≠DN,結(jié)論④錯誤.綜上即可得出結(jié)論.
解:①∵∠E=∠F=90°,∠B=∠C,
∴∠BAE=∠CAF,
∵∠BAE=∠BAC+∠2,∠CAF=∠CAB+∠1,
∴∠1=∠2,結(jié)論①正確;
②在△BAE和△CAF中,
∴△BAE≌△CAF(AAS),
∴BE=CF,結(jié)論②正確;
③∵△BAE≌△CAF,
∴AB=AC.
在△ACN和△ABM中,
,
∴△ACN≌△ABM(ASA),結(jié)論③正確;
④∵△ACN≌△ABM,
∴AN=AM.
∵AB=AC,
∴BN=CM.
在△BDN和△CDM中,
,
∴△BDN≌△CDM(AAS),
∴DN=DM.
∵∠CMD=∠CAB+∠B,∠C=∠B,
∴∠CMD≠∠C,
∴CD≠DM,
∴CD≠DN,結(jié)論④錯誤.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了豐富學生課余生活,開展了“第二課堂”的活動,推出了以下四種選修課程: A :繪畫, B :唱歌,C :演講,D :十字繡,學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程,學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖中的信息,解決下列問題:
(1)這次學校抽查的學生人數(shù)是 ;
(2)將條形統(tǒng)計圖補充完整;
(3)如果該校共有1000名學生,請你估計該校報 D 的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的有( )
①兩條直線相交,交點叫垂足;
②在同一平面內(nèi),過一點有且只有一條直線與已知直線垂直;
③在同一平面內(nèi),一條直線有且只有一條垂線;
④在同一平面內(nèi),一條線段有無數(shù)條垂線;
⑤過一點可以向一條射線或線段所在的直線作垂線;
⑥若,則是的垂線,不是的垂線.
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是BC邊的中點,BD=2,tanB=.
(1)求AD和AB的長;
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,函數(shù)(x<0)的圖象與直線y=x+2交于點A(-3,m).
(1)求k,m的值;
(2)已知點P(a,b)是直線y=x上,位于第三象限的點,過點P作平行于x軸的直線,交直線y=x+2于點M,過點P作平行于y軸的直線,交函數(shù)(x<0)的圖象于點N.
①當a=-1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;
②若PN≥PM結(jié)合函數(shù)的圖象,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明騎單車上學,當他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學校以下是他本次上學所用的時間與離家距離的關(guān)系示意圖.
根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學校的路程是______ 米,小明在書店停留了______ 分鐘.
(2)本次上學途中,小明一共行駛了______ 米,一共用了______ 分鐘
(3)在整個上學的途中_____(哪個時間段)小明騎車速度最快,最快的速度是____ 米/分.
(4)小明出發(fā)多長時間離家1.2千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是我縣某養(yǎng)雞場2001~2006年的養(yǎng)雞統(tǒng)計圖:
(1)從圖中你能得到什么信息.
(2)各年養(yǎng)雞多少萬只?
(3)所得(2)的數(shù)據(jù)都是準確數(shù)嗎?
(4)這張圖與條形統(tǒng)計圖比較,有什么優(yōu)點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,△ABC的頂點均在格點上,直線a為對稱軸,點A,點C在直線a上.
(1)作△ABC關(guān)于直線a的軸對稱圖形△ADC;
(2)若∠BAC=35°,則∠BDA= ;
(3)△ABD的面積等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2.說明:∠DGA+∠BAC=180°.請將說明過程填寫完整.
解:∵EF∥AD(已知),
∴∠2=________(________________________).
又∵∠1=∠2(____________),
∴∠1=_____(____________).
∴AB∥________(________________________).
∴∠DGA+∠BAC=180°(______________________________).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com