如圖,某養(yǎng)雞專業(yè)戶準(zhǔn)備利用一面墻(墻的長(zhǎng)度大于50米),用長(zhǎng) 50米的籬笆圍成一個(gè)雞的活動(dòng)場(chǎng)地矩形ABCD,其中AB邊上有一個(gè)寬2米的門(即PQ=2米)且門不需用籬笆.若AD長(zhǎng)為x米,且AD<AB,矩形場(chǎng)地的面積為S米2
(1)求S與x之間的函數(shù)關(guān)系式(寫出x的取值范圍);
(2)若S=288米2時(shí),求AD的長(zhǎng).

解:(1)AB=50+2-2x=52-2x,
S=x(52-2x)=-2x2+52x (0<x<);

(2)令S=-2x2+52x=288,
化簡(jiǎn)得:x2-26x+144=0,
∴x1=8,x2=18,
∵0<x<,
∴x=18不合題意,舍去,
∴x=8,且52-2x=36<50,
∴AD=8.
答:AD的長(zhǎng)為8米.
分析:(1)由50米的籬笆,及2米寬的門,得到平行與墻的邊,以及垂直于墻的兩條邊之和,由AD=x,根據(jù)求出的之和表示出AB的長(zhǎng),利用矩形的面積公式列出矩形面積S與x的關(guān)系式,再由52-2x大于0,求出自變量x的取值范圍即可;
(2)令(1)表示出的S與x的關(guān)系式中S=288,列出關(guān)于x的一元二次方程,求出方程的解,根據(jù)x的范圍,得到滿足題意的x的值,即為AB的長(zhǎng).
點(diǎn)評(píng):此題考查了一元二次方程的應(yīng)用,以及根據(jù)實(shí)際問(wèn)題列二次函數(shù)關(guān)系式,屬于與實(shí)際生活密切相關(guān)的問(wèn)題相聯(lián)系的應(yīng)用題,找出題中的等量關(guān)系是解決本題的關(guān)鍵;易錯(cuò)點(diǎn)是根據(jù)籬笆長(zhǎng)得到平行于墻的邊長(zhǎng).同時(shí)利用第一問(wèn)x的范圍及平行與墻的邊AB與墻長(zhǎng)比較大小,對(duì)x進(jìn)行合理的取舍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、興隆鎮(zhèn)某養(yǎng)雞專業(yè)戶準(zhǔn)備建造如圖所示的矩形養(yǎng)雞場(chǎng),要求長(zhǎng)與寬的比為2:1,在養(yǎng)雞場(chǎng)內(nèi),沿前側(cè)內(nèi)墻保留3m寬的走道,其他三側(cè)內(nèi)墻各保留1m寬的走道,當(dāng)矩形養(yǎng)雞場(chǎng)長(zhǎng)和寬各為多少時(shí),雞籠區(qū)域面積是288m2 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•道里區(qū)模擬)如圖,某養(yǎng)雞專業(yè)戶準(zhǔn)備利用一面墻(墻的長(zhǎng)度大于50米),用長(zhǎng) 50米的籬笆圍成一個(gè)雞的活動(dòng)場(chǎng)地矩形ABCD,其中AB邊上有一個(gè)寬2米的門(即PQ=2米)且門不需用籬笆.若AD長(zhǎng)為x米,且AD<AB,矩形場(chǎng)地的面積為S米2
(1)求S與x之間的函數(shù)關(guān)系式(寫出x的取值范圍);
(2)若S=288米2時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東九年級(jí)上學(xué)期第二階段數(shù)學(xué)考試練習(xí)卷(解析版) 題型:解答題

興隆鎮(zhèn)某養(yǎng)雞專業(yè)戶準(zhǔn)備建造如圖所示的矩形養(yǎng)雞場(chǎng),要求長(zhǎng)與寬的比為2:1,在養(yǎng)雞場(chǎng)內(nèi),沿前側(cè)內(nèi)墻保留3m寬的走道,其他三側(cè)內(nèi)墻各保留1m寬的走道,當(dāng)矩形養(yǎng)雞場(chǎng)長(zhǎng)和寬各為多少時(shí),雞籠區(qū)域面積是288?

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年黑龍江省哈爾濱市道里區(qū)郊區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,某養(yǎng)雞專業(yè)戶準(zhǔn)備利用一面墻(墻的長(zhǎng)度大于50米),用長(zhǎng) 50米的籬笆圍成一個(gè)雞的活動(dòng)場(chǎng)地矩形ABCD,其中AB邊上有一個(gè)寬2米的門(即PQ=2米)且門不需用籬笆.若AD長(zhǎng)為x米,且AD<AB,矩形場(chǎng)地的面積為S米2
(1)求S與x之間的函數(shù)關(guān)系式(寫出x的取值范圍);
(2)若S=288米2時(shí),求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案