計(jì)算
(1)3x2•(-x)2÷x   
(2)(x+2)(x-3)
(3)(3a+b)2
(4)(a+1)(a-1)-(a+1)2
考點(diǎn):整式的混合運(yùn)算
專題:
分析:(1)先算乘方,再算乘除;
(2)先算乘法,再合并同類項(xiàng)即可;
(3)根據(jù)完全平方公式進(jìn)行計(jì)算即可;
(4)先算乘法,再合并同類項(xiàng)即可.
解答:解:(1)原式=3x2•x2÷x
=3x3

(2)原式=x2-3x+2x-6
=x2-x-6;

(3)原式=9a2+6ab+b2

(4)原式=a2-1-a2-2a-1
=-2a-2.
點(diǎn)評(píng):本題考查了整式的混合運(yùn)算的應(yīng)用,主要考查學(xué)生的計(jì)算能力,題目比較好,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知24-n•42n+1=8-n,則n的值為( 。
A、n=-3B、n=-2
C、n=-1D、n=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在矩形ABCD中,把∠B、∠D分別翻折,使點(diǎn)B、D分別落在對(duì)角線BC上的點(diǎn)E、F處,折痕分別為CM、AN.
(1)求證:△ADN≌△CBM.
(2)請(qǐng)連接MF、NE,證明四邊形MFNE是平行四邊形,四邊形MFNE是菱形嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD、BEFG均為正方形.

(1)如圖1,連接AG、CE,試判斷AG和CE的數(shù)量關(guān)系和位置關(guān)系并證明.
(2)將正方形BEFG繞點(diǎn)B順時(shí)針旋轉(zhuǎn)β角(0°<β<180°),如圖2,連接AG、CE相交于點(diǎn)M,連接MB,當(dāng)角β發(fā)生變化時(shí),∠EMA的度數(shù)是否發(fā)生變化?若不變化,求出∠EMA的度數(shù);若發(fā)生變化,請(qǐng)說明理由.
(3)在(2)的條件下,∠EMB的度數(shù)是否是定值?若是,求出∠EMB的度數(shù);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

圖(1)為一個(gè)無(wú)蓋的正方體紙盒,現(xiàn)將其展開成平面圖,如圖(2).已知展開圖中每個(gè)正方形的邊長(zhǎng)為1.
(1)求該展開圖中可畫出最長(zhǎng)線段的長(zhǎng)度,并求出這樣的線段可畫幾條.
(2)試比較立體圖中∠ABC與平面展開圖中∠A′B′C′的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,游客從某旅游區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C;另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為45m/min.在甲出發(fā)2min后,乙開始從A乘纜車到B,在B處停留5min后,再?gòu)腂勻速步行到C,二人同時(shí)到達(dá).已知纜車勻速直線運(yùn)動(dòng)的速度為180m/min,山路AC長(zhǎng)為2430m,且測(cè)得∠CBA=45°,∠CBA=105°.(參考數(shù)據(jù):
2
≈1.4,
3
≈1.7).
(1)求索道AB的長(zhǎng);
(2)求乙的步行速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程:(1-3y)2+2(3y-1)=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,矩形OABC過原點(diǎn)O,且A(0,2)、C(6,0),∠AOC的平分線交AB于點(diǎn)D.
(1)直接寫出點(diǎn)B的坐標(biāo);
(2)如圖1,點(diǎn)P從點(diǎn)O出發(fā),以每秒
2
個(gè)單位長(zhǎng)度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.
①當(dāng)t為何值時(shí),△OPQ的面積等于1;
②當(dāng)t為何值時(shí),△PQB為直角三角形;
(3)如圖2,點(diǎn)E(0,-2),連接DC、DE,將∠CDE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),兩邊DC、DE與x軸、y軸分別交于點(diǎn)M、N,若△DEN為等腰三角形,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)(
2
3
5×35
(2)315÷313

查看答案和解析>>

同步練習(xí)冊(cè)答案