【題目】下列美麗的圖案,既是軸對稱圖形又是中心對稱圖形的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
【答案】C
【解析】根據(jù)軸對稱圖形和中心對稱圖形的定義的特點,依次判斷,可知第一、三、四幅圖形即是軸對稱圖形又是中心對稱圖形;第二幅圖只是軸對稱圖形,不是中心對稱圖形。
所以答案是:C.
【考點精析】解答此題的關(guān)鍵在于理解軸對稱圖形的相關(guān)知識,掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸,以及對中心對稱及中心對稱圖形的理解,了解如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2019年端午節(jié)前夕,某商場投入13800元資金購進甲、乙兩種商品共500件,兩種商品的成本價和銷售價如下表所示:
商品 單價(元/件) | 成本價 | 銷售價 |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場購進兩種商品各多少件?
(2)這批商品全部銷售完后,該商場共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
(1)請你補全這個輸水管道的圓形截面;
(2)若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線與直線的圖象如圖所示,當(dāng)y1≠y2時,取y1 , y2中的較大值記為N;當(dāng)y1=y2時,N=y1=y2 . 則下列說法:
①當(dāng)0<x<2時,N=y1;
②N隨x的增大而增大的取值范圍是x<0;
③取y1 , y2中的較小值記為M,則使得M大于4的x值不存在;
④若N=2,則x=2﹣ 或x=1.
其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,關(guān)于x的分式方程=1.
(1)當(dāng)m=﹣1時,請判斷這個方程是否有解并說明理由;
(2)若這個分式方程有實數(shù)解,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在折紙活動中,小李制作了一張△ABC的紙片,點D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A'重合.
(1)若∠B=50°,∠C=60°,求∠A的度數(shù);
(2)若∠1+∠2=130°,求∠A的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com