【題目】如圖,已知在平面直角坐標系xOy中,拋物線m:y=﹣2x2﹣2x的頂點為C,與x軸兩個交點為P,Q.現(xiàn)將拋物線m先向下平移再向右平移,使點C的對應點C′落在x軸上,點P的對應點P′落在y軸上,則下列各點的坐標不正確的是( 。

A. C(﹣ B. C′(1,0) C. P(﹣1,0) D. P′(0,﹣

【答案】B

【解析】分析:根據(jù)拋物線m的解析式求得點P、C的坐標,然后由點P′y軸上,點C′x軸上得到平移規(guī)律,由此可以確定點P′、C′的坐標.

詳解:∵y=﹣2x2﹣2x=﹣2x(x+1)或y=﹣2(x+2+,

P(﹣1,0),O(0,0),C(﹣,).

又∵將拋物線m先向下平移再向右平移,使點C的對應點C′落在x軸上,點P的對應點P′落在y軸上,

∴該拋物線向下平移了個單位,向右平移了1個單位,

C′(,0),P′(0,﹣).

綜上所述,選項B符合題意.

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.

(1)求B點到直線CA的距離;

(2)執(zhí)法船從A到D航行了多少海里?(≈1.414,≈1.732,結果精確到0.1海里)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB兩點在反比例函數(shù)y的圖象上,C,D兩點在反比例函數(shù)y的圖象上,ACx軸于點E,BDx軸于點F,AC2,BD3,EF,則k2k1的值為( )

A. 4 B. C. D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于任意有理數(shù)a,b,定義運算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.

(1)求(﹣2)⊙3的值;

(2)對于任意有理數(shù)m,n,請你重新定義一種運算“”,使得5⊕3=20,寫出你定義的運算:m⊕n=   (用含m,n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y.

(1)若該反比例函數(shù)的圖象與直線ykx+4(k≠0)只有一個公共點,求k的值;

(2)如圖,反比例函數(shù)y (1≤x≤4)的圖象記為曲線C1,將C1向左平移2個單位長度,得曲線C2,請在圖中畫出C2,并直接寫出C1平移到C2處所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線yx2y軸相交于點A,與反比例函數(shù)y在第一象限內的圖象相交于點B(m2)

(1)求該反比例函數(shù)的關系式;

(2)若直線yx2向上平移后與反比例函數(shù)y在第一象限內的圖象相交于點C,且ABC的面積為18,求平移后的直線對應的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】滿足的整數(shù)對共有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+cA,B,C三點,點A的坐標是3,0,點C的坐標是0,-3,動點P在拋物線上.

1b =_________,c =_________,點B的坐標為_____________;(直接填寫結果)

(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;

(3)過動點PPE垂直y軸于點E,交直線AC于點D,過點Dx軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,射線 OC在∠AOB的內部,圖中共有 3個角:∠AOB、∠AOC 和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線 OC是∠AOB的奇妙線.

1)一個角的角平分線_______這個角的奇妙線.(填是或不是);

2)如圖 2,若∠MPN60°,射線 PQ繞點 P PN位置開始,以每秒 10°的速度逆時針旋轉,當∠QPN首次等于 180°時停止旋轉,設旋轉的時間為 ts).

t為何值時,射線 PM是∠QPN 的奇妙線?

②若射線 PM 同時繞點 P以每秒的速度逆時針旋轉,并與 PQ同時停止旋轉.請求出當射線 PQ是∠MPN的奇妙線時 t的值.

查看答案和解析>>

同步練習冊答案