【題目】如圖,已知AB是⊙O的直徑,C,D為⊙O上的點且∠ABC=∠DBC,過C作CE⊥BD交BD的延長線于點E.
(1)求證:CE是⊙O的切線.
(2)若F是OB的中點,FG⊥OB交CE于點G,FG=,tan∠ABC=,求⊙O的半徑.
【答案】(1)證明見解析;(2)⊙O的半徑=4
【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OCB=∠OBC,推出OC∥BE,得到OC⊥CE,根據(jù)切線的判定定理得到CE是⊙O的切線;
(2)延長EC,BA相交于R,根據(jù)余角的性質(zhì)得到∠ACR=∠ABC,根據(jù)相似三角形的性質(zhì)得到,設(shè)AR=3x,RC=4x,設(shè)⊙O的半徑為2a,根據(jù)勾股定理和相似三角形的性質(zhì)即可得到結(jié)論.
解:(1)連接OC,∵OC=OB,
∴∠OCB=∠OBC,
∵∠ABC=∠DBC,
∴OC∥BE,
∵CE⊥BD,
∴OC⊥CE,
∴CE是⊙O的切線;
(2)延長EC,BA相交于R,
∵∠ACR+∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACR=∠ABC,
∴△ACR∽△CBR,
∴,
設(shè)AR=3x,RC=4x,
設(shè)⊙O的半徑為2a,
4a2+16x2=(3x+2a)2,x=a,
∵△OCR∽△GFR
∴,
∴,
∴a=2,
∴⊙O的半徑=4.
科目:初中數(shù)學 來源: 題型:
【題目】對于實數(shù)a,b,我們可以用表示a,b兩數(shù)中較大的數(shù),例如,.類似的若函數(shù)y1、y2都是x的函數(shù),則y=min{y1,y2}表示函數(shù)y1和y2的取小函數(shù).
(1)設(shè),,則函數(shù)的圖像應(yīng)該是___________中的實線部分.
(2)請在下圖中用粗實線描出函數(shù)的圖像,觀察圖像可知當x的取值范圍是_____________________時,y隨x的增大而減小.
(3)若關(guān)于x的方程有四個不相等的實數(shù)根,則t的取值范圍是_____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形中,,,,,,點在邊上,,點是射線上一個動點(不與點、重合),聯(lián)結(jié)交射線于點,設(shè),.
(1)求的長;
(2)當動點在線段上時,試求與之間的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)當動點運動時,直線與直線的夾角等于,請直接寫出這時線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=ax2+bx+c圖象如圖所示,則下列結(jié)論中正確的個數(shù)( )
① abc<0;② a-b+c<0;③ a+b+c>0;④ 2c =3b
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,I為△ABC的內(nèi)心,AI的延長線交BC于D,若OI⊥AD,則sin∠CAD的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,某校開展“雙劇進課堂”的活動,該校童威隨機抽取部分學生,按四個類別:表示“很喜歡”,表示“喜歡”,表示“一般”,表示“不喜歡”,調(diào)查他們對漢劇的喜愛情況,將結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息,解決下列問題:
(1)這次共抽取_________名學生進行統(tǒng)計調(diào)查,扇形統(tǒng)計圖中,類所對應(yīng)的扇形圓心角的大小為__________
(2)將條形統(tǒng)計圖補充完整
(3)該校共有1500名學生,估計該校表示“喜歡”的類的學生大約有多少人?
各類學生人數(shù)條形統(tǒng)計圖各類學生人數(shù)扇形統(tǒng)計圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點 E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC上有一點E,且CE=4AE,點F在DC的延長線上,連接EF,過點E作EG⊥EF,交CB的延長線于點G,連接GF并延長,交AC的延長線于點P,若AB=5,CF=2,則線段EP的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com